Publications

18 Results
Skip to search filters

Pressure dependence of electronic states in secondary explosives: comparison between bulk and air/explosive interface

Farrow, Darcie F.; Farrow, Darcie F.; Kohl, Ian T.; Kohl, Ian T.; Rupper, Stephen G.; Rupper, Stephen G.; Alam, Mary K.; Alam, Mary K.; Martin, Laura E.; Martin, Laura E.; Fan, Hongyou F.; Fan, Hongyou F.; Bian, Kaifu B.; Bian, Kaifu B.; Knepper, Robert; Knepper, Robert; Marquez, Michael P.; Marquez, Michael P.; Kay, Jeffrey J.; Kay, Jeffrey J.

Abstract not provided.

Crystallization behavior of vapor-deposited hexanitroazobenzene (HNAB) films

AIP Conference Proceedings

Knepper, Robert; Tappan, Alexander S.; Rodriguez, Marko A.; Alam, M.K.; Martin, Laura E.; Marquez, M.P.

Vapor-deposited hexanitroazobenzene (HNAB) has been shown to form an amorphous structure as-deposited that crystallizes over a period ranging from several hours to several weeks, depending on the ambient temperature. Raman spectroscopy and x-ray diffraction were used to identify three distinct phases during the crystallization process: the as-deposited amorphous structure, the HNAB-II crystal structure, and an as-yet unidentified crystal structure. Significant qualitative differences in the nucleation and growth of the crystalline phases were observed between 65°C and 75°C. While the same two polymorphs form in all cases, significant variation in the quantities of each phase was observed as a function of temperature. © 2012 American Institute of Physics.

More Details

Vibrational spectroscopy of HNS degradation

Martin, Laura E.; Schmitt, Randal L.; Ten Eyck, Gregory A.; Welle, Eric W.

Hexanitrostilbene (HNS) is a widely used explosive, due in part to its high thermal stability. Degradation of HNS is known to occur through UV, chemical exposure, and heat exposure, which can lead to reduced performance of the material. Common methods of testing for HNS degradation include wet chemical and surface area testing of the material itself, and performance testing of devices that use HNS. The commonly used chemical tests, such as volatility, conductivity and contaminant trapping provide information on contaminants rather than the chemical stability of the HNS itself. Additionally, these tests are destructive in nature. As an alternative to these methods, we have been exploring the use of vibrational spectroscopy as a means of monitoring HNS degradation non-destructively. In particular, infrared (IR) spectroscopy lends itself well to non-destructive analysis. Molecular variations in the material can be identified and compared to pure samples. The utility of IR spectroscopy was evaluated using pressed pellets of HNS exposed to DETA (diethylaminetriamine). Amines are known to degrade HNS, with the proposed product being a {sigma}-adduct. We have followed these changes as a function of time using various IR sampling techniques including photoacoustic and attenuated total reflectance (ATR).

More Details

Spectroscopic Detection of Pathogens

Alam, Mary K.; Timlin, Jerilyn A.; Martin, Laura E.

The goal of this LDRD Research project was to provide a preliminary examination of the use of infrared spectroscopy as a tool to detect the changes in cell cultures upon activation by an infectious agent. Due to a late arrival of funding, only 5 months were available to transfer and setup equipment at UTTM,develop cell culture lines, test methods of in-situ activation and collect kinetic data from activated cells. Using attenuated total reflectance (ATR) as a sampling method, live cell cultures were examined prior to and after activation. Spectroscopic data were collected from cells immediately after activation in situ and, in many cases for five successive hours. Additional data were collected from cells activated within a test tube (pre-activated), in both transmission mode as well as in ATR mode. Changes in the infrared data were apparent in the transmission data collected from the pre-activated cells as well in some of the pre-activated ATR data. Changes in the in-situ activated spectral data were only occasionally present due to (1) the limited time cells were studied and (2) incomplete activation. Comparison of preliminary data to infrared bands reported in the literature suggests the primary changes seen are due an increase in ribonucleic acid (RNA) production. This work will be continued as part of a 3 year DARPA grant.

More Details
18 Results
18 Results