Publications

Results 1–25 of 213

Search results

Jump to search filters

Orthogonal luminescence lifetime encoding by intermetallic energy transfer in heterometallic rare-earth MOFs

Nature Communications

Sava Gallis, Dorina F.; Deneff, Jacob I.; Rohwer, Lauren E.; Butler, Kimberly B.; Kaehr, Bryan J.; Vogel, Dayton J.; Luk, Ting S.; Cruz-Cabrera, A.A.; Reyes, Raphael A.; Martin, James E.

Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker. Precise manipulation of the luminescence decay dynamics over a wide microsecond regime is achieved via control over metal distribution in these systems. Demonstration of this platform’s relevance as a tag is attained via a dynamic double encoding method that uses the braille alphabet, and by incorporation into photocurable inks patterned on glass and interrogated via digital high-speed imaging. This study reveals true orthogonality in encoding using independently variable lifetime and composition, and highlights the utility of this design strategy, combining facile synthesis and interrogation with complex optical properties.

More Details

Suppression of Midinfrared Plasma Resonance Due to Quantum Confinement in δ -Doped Silicon

Physical Review Applied

Young, Steve M.; Katzenmeyer, Aaron M.; Anderson, Evan M.; Luk, Ting S.; Ivie, Jeffrey A.; Schmucker, Scott W.; Gao, Xujiao G.; Misra, Shashank M.

The classical Drude model provides an accurate description of the plasma resonance of three-dimensional materials, but only partially explains two-dimensional systems where quantum mechanical effects dominate such as P:δ layers - atomically thin sheets of phosphorus dopants in silicon that induce electronic properties beyond traditional doping. Previously it was shown that P:δ layers produce a distinct Drude tail feature in ellipsometry measurements. However, the ellipsometric spectra could not be properly fit by modeling the δ layer as a discrete layer of classical Drude metal. In particular, even for large broadening corresponding to extremely short relaxation times, a plasma resonance feature was anticipated but not evident in the experimental data. In this work, we develop a physically accurate description of this system, which reveals a general approach to designing thin films with intentionally suppressed plasma resonances. Our model takes into account the strong charge-density confinement and resulting quantum mechanical description of a P:δ layer. We show that the absence of a plasma resonance feature results from a combination of two factors: (i) the sharply varying charge-density profile due to strong confinement in the direction of growth; and (ii) the effective mass and relaxation time anisotropy due to valley degeneracy. The plasma resonance reappears when the atoms composing the δ layer are allowed to diffuse out from the plane of the layer, destroying its well-confined two-dimensional character that is critical to its distinctive electronic properties.

More Details

Photoconductive Metasurfaces for Near-Field Terahertz Sources and Detectors

Proceedings of SPIE - The International Society for Optical Engineering

Hale, Lucy; Jung, Hyunseung; Seddon, James; Sarma, Raktim S.; Gennaro, Sylvain D.; Briscoe, Jayson B.; Harris, Charles T.; Luk, Ting S.; Padmanabha Iyer, Prasad P.; Addamane, Sadhvikas J.; Reno, John L.; Brener, Igal B.; Mitrofanov, Oleg

Aperture near-field microscopy and spectroscopy (a-SNOM) enables the direct experimental investigation of subwavelength-sized resonators by sampling highly confined local evanescent fields on the sample surface. Despite its success, the versatility and applicability of a-SNOM is limited by the sensitivity of the aperture probe, as well as the power and versatility of THz sources used to excite samples. Recently, perfectly absorbing photoconductive metasurfaces have been integrated into THz photoconductive antenna detectors, enhancing their efficiency and enabling high signal-to-noise ratio THz detection at significantly reduced optical pump powers. Here, we discuss how this technology can be applied to aperture near-field probes to improve both the sensitivity and potentially spatial resolution of a-SNOM systems. In addition, we explore the application of photoconductive metasurfaces also as near-field THz sources, providing the possibility of tailoring the beam profile, polarity and phase of THz excitation. Photoconductive metasurfaces therefore have the potential to broaden the application scope of aperture near-field microscopy to samples and material systems which currently require improved spatial resolution, signal-to-noise ratio, or more complex excitation conditions.

More Details

InAs based Nonlinear Dielectric Metasurface for Binary Phase Terahertz Generation

2023 Conference on Lasers and Electro-Optics, CLEO 2023

Jung, Hyunseung; Hale, Lucy L.; Gennaro, Sylvain D.; Briscoe, Jayson B.; Padmanabha Iyer, Prasad P.; Doiron, Chloe F.; Harris, Charles T.; Luk, Ting S.; Addamane, Sadhvikas J.; Reno, John L.; Brener, Igal B.; Mitrofanov, Oleg

We demonstrate an InAs-based nonlinear dielectric metasurface, which can generate terahertz (THz) pulses with opposite phase in comparison to an unpatterned InAs layer. It enables binary phase THz metasurfaces for generation and focusing of THz pulses.

More Details

Terahertz Photoconductive Metasurface Detector with enhanced Two-Step Photon Absorption at 1550 nm

2023 Conference on Lasers and Electro-Optics, CLEO 2023

Jung, Hyunseung; Hale, Lucy L.; Briscoe, Jayson B.; Sarma, Raktim S.; Luk, Ting S.; Addamane, Sadhvikas J.; Reno, John L.; Brener, Igal B.; Mitrofanov, Oleg

We demonstrate the use of low-temperature grown GaAs (LT-GaAs) metasurface as an ultrafast photoconductive switching element gated with 1550 nm laser pulses. The metasurface is designed to enhance a weak two-step photon absorption at 1550 nm, enabling THz pulse detection.

More Details

Covert MOF-Based Photoluminescent Tags via Tunable Linker Energetics

ACS Applied Materials and Interfaces

Deneff, Jacob I.; Rohwer, Lauren E.; Valdez, Nichole R.; Rodriguez, Mark A.; Luk, Ting S.; Butler, Kimberly B.; Sava Gallis, Dorina F.

Optical anticounterfeiting tags utilize the photoluminescent properties of materials to encode unique patterns, enabling identification and validation of important items and assets. These tags must combine optical complexity with ease of production and authentication to both prevent counterfeiting and to remain practical for widespread use. Metal-organic frameworks (MOFs) based on polynuclear, rare earth clusters are ideal materials platforms for this purpose, combining fine control over structure and composition, with tunable, complex energy transfer mechanisms via both linker and metal components. Here we report the design and synthesis of a set of heterometallic MOFs based on combinations of Eu, Nd, and Yb with the tetratopic linker 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene. The energetics of this linker facilitate the intentional concealment of the visible emissions from Eu while retaining the infrared emissions of Nd and Yb, creating an optical tag with multiple covert elements. Unique to the materials system reported herein, we document the occurrence of a previously not observed 11-metal cluster correlated with the presence of Yb in the MOFs, coexisting with a commonly encountered 9-metal cluster. We demonstrate the utility of these materials as intricate optical tags with both rapid and in-depth screening techniques, utilizing orthogonal identifiers across composition, emission spectra, and emission decay dynamics. This work highlights the important effect of linker selection in controlling the resulting photoluminescent properties in MOFs and opens an avenue for the targeted design of highly complex, multifunctional optical tags.

More Details

Femtosecond Reflectance Spectroscopy for Energetic Material Diagnostics

Cole-Filipiak, Neil C.; Schrader, Paul E.; Luk, Ting S.; Ramasesha, Krupa R.

Understanding the fundamental mechanisms underpinning shock initiation is critical to predicting energetic material (EM) safety and performance. Currently, the timescales and pathways by which shock-excited lattice modes transfer energy into specific chemical bonds remains an open question. Towards understanding these mechanisms, our group has previously measured the vibrational energy transfer (VET) pathways in several energetic thin films using broadband, femtosecond transient absorption spectroscopy. However, new technologies are needed to move beyond these thin film surrogates and measure broadband VET pathways in realistic EM morphologies. Herein, we describe a new broadband, femtosecond, attenuated total reflectance spectroscopy apparatus. Performance of the system is benchmarked against published data and the first VET results from a pressed EM pellet are presented. This technology enables fundamental studies of VET dynamics across sample configurations and environments (pressure, temperature, etc .) and supports the potential use of VET studies in the non-destructive surveillance of EM components.

More Details

Highly efficient terahertz photoconductive metasurface detectors operating at microwatt-level gate powers

Optics Letters

Hale, Lucy L.; Harris, Charles T.; Luk, Ting S.; Addamane, Sadhvikas J.; Reno, J.L.; Brener, Igal B.; Laros, James H.

Despite their wide use in terahertz (THz) research and technology, the application spectra of photoconductive antenna (PCA) THz detectors are severely limited due to the relatively high optical gating power requirement. This originates from poor conversion efficiency of optical gate beam photons to photocurrent in materials with subpicosecond carrier lifetimes. Here we show that using an ultra-thin (160 nm), perfectly absorbing low-temperature grown GaAs metasurface as the photoconductive channel drastically improves the efficiency of THz PCA detectors. This is achieved through perfect absorption of the gate beam in a significantly reduced photoconductive volume, enabled by the metasurface. This Letter demonstrates that sensitive THz PCA detection is possible using optical gate powers as low as 5 μW-three orders of magnitude lower than gating powers used for conventionalPCAdetectors.We show that significantly higher optical gate powers are not necessary for optimal operation, as they do not improve the sensitivity to the THz field. This class of efficient PCA THz detectors opens doors for THz applications with low gate power requirements.

More Details

Optically-Triggered Optical Limiters for Short-Wavelength Infrared Sensor Protection

2021 Conference on Lasers and Electro-Optics, CLEO 2021 - Proceedings

Wood, Michael G.; Mckay, Alec; Morin, Theodore J.; Serkland, Darwin K.; Luk, Ting S.; Wolfley, Steven L.; Gastian, Loren G.; Mudrick, John M.; Jasperson, Ben; Johnson, Harley T.

We report experimental and numerical developments extending the operating range of vanadium dioxide based optical limiters into the short-wavelength infrared. Pixelated sensor elements have been fabricated which show optically-triggered limiting of a 2.7 µm probe.

More Details

Nanocomposite-seeded Single-Domain Growth of Lithium Niobate Thin Films for Photonic Applications

2021 Conference on Lasers and Electro-Optics, CLEO 2021 - Proceedings

Paldi, Robynne L.; Aryal, Arjun; Behzadirad, Mahmoud; Stricklin, Isaac; Busani, Tito; Luk, Ting S.; Siddiqui, Aleem M.; Wang, Haiyan

Epitaxial single-domain LiNbO3 thin-films are realized using a novel nanocomposite seeding method. Full microstructure characterization and optical property measurement is conducted as a first step to demonstrate viability of this material for integrated photonics applications.

More Details

Encoding Multilayer Complexity in Anti-Counterfeiting Heterometallic MOF-Based Optical Tags

Angewandte Chemie - International Edition

Deneff, Jacob I.; Butler, Kimberly B.; Rohwer, Lauren E.; Pearce, Charles J.; Valdez, Nichole R.; Rodriguez, Mark A.; Luk, Ting S.; Sava Gallis, Dorina F.

Optical tags provide a way to quickly and unambiguously identify valuable assets. Current tag fluorophore options lack the tunability to allow combined methods of encoding in a single material. Herein we report a design strategy to encode multilayer complexity in a family of heterometallic rare-earth metal–organic frameworks based on highly connected nonanuclear clusters. To impart both intricacy and security, a synergistic approach was implemented resulting in both overt (visible) and covert (near-infrared, NIR) properties, with concomitant multi-emissive spectra and tunable luminescence lifetimes. Tag authentication is validated with a variety of orthogonal detection methodologies. Importantly, the effect induced by subtle compositional changes on intermetallic energy transfer, and thus on the resulting photophysical properties, is demonstrated. This strategy can be widely implemented to create a large library of highly complex, difficult-to-counterfeit optical tags.

More Details

Assessing atomically thin delta-doping of silicon using mid-infrared ellipsometry

Journal of Materials Research

Katzenmeyer, Aaron M.; Luk, Ting S.; Bussmann, Ezra B.; Young, Steve M.; Anderson, Evan M.; Marshall, Michael T.; Ohlhausen, J.A.; Kotula, Paul G.; Lu, Ping L.; Campbell, DeAnna M.; Lu, Tzu-Ming L.; Liu, Peter Q.; Ward, Daniel R.; Misra, Shashank M.

Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.

More Details

Near-field probing of strong light-matter coupling in single IR antennae

Proceedings of SPIE - The International Society for Optical Engineering

Mitrofanov, Oleg; Wang, Chih-Feng; Habteyes, Terefe G.; Luk, Ting S.; Klem, John F.; Brener, Igal B.; Chen, Hou-Tong

Quantum well intersubband polaritons are traditionally studied in large scale ensembles, over many wavelengths in size.In this presentation, we demonstrate that it is possible to detect and investigate intersubband polaritons in a single sub-wavelength nanoantenna in the IR frequency range. We observe polariton formation using a scattering-type near-fieldmicroscope and nano-FTIR spectroscopy. In this work, we will discuss near-field spectroscopic signatures of plasmonic antennae withand without coupling to the intersubband transition in quantum wells located underneath the antenna. Evanescent fieldamplitude spectra recorded on the antenna surface show a mode anti-crossing behavior in the strong coupling case. Wealso observe a corresponding strong-coupling signature in the phase of the detected field. We anticipate that this near-fieldapproach will enable explorations of strong and ultrastrong light-matter coupling in the single nanoantenna regime,including investigations of the elusive effect of ISB polariton condensation.

More Details

Compositional dependence of linear and nonlinear optical response in crystalline hafnium zirconium oxide thin films

Journal of Applied Physics

Ihlefeld, Jon F.; Luk, Ting S.; Smith, Sean S.; Fields, Shelby S.; Jaszewski, Samantha T.; Hirt, Daniel M.; Riffe, Will T.; Bender, Scott; Constantin, Costel; Ayyasamy, Mukil V.; Balachandran, Prasanna V.; Lu, Ping L.; Henry, Michael D.; Davids, Paul D.

Composition dependence of second harmonic generation, refractive index, extinction coefficient, and optical bandgap in 20 nm thick crystalline Hf1-xZrxO2 (0 ≤ x ≤ 1) thin films is reported. The refractive index exhibits a general increase with increasing ZrO2 content with all values within the range of 1.98-2.14 from 880 nm to 400 nm wavelengths. A composition dependence of the indirect optical bandgap is observed, decreasing from 5.81 eV for HfO2 to 5.17 eV for Hf0.4Zr0.6O2. The bandgap increases for compositions with x > 0.6, reaching 5.31 eV for Hf0.1Zr0.9O2. Second harmonic signals are measured for 880 nm incident light. The magnitude of the second harmonic signal scales with the magnitude of the remanant polarization in the composition series. Film compositions that display near zero remanent polarizations exhibit minimal second harmonic generation while those with maximum remanent polarization also display the largest second harmonic signal. The results are discussed in the context of ferroelectric phase assemblage in the hafnium zirconium oxide films and demonstrate a path toward a silicon-compatible integrated nonlinear optical material.

More Details

An In-situ and Direct Confirmation of Super-Planckian Thermal Radiation Emitted From a Metallic Photonic-Crystal at Optical Wavelengths

Scientific Reports

Lin, Shawn-Yu; Hsieh, Mei-Li; John, Sajeev; Frey, B.; Bur, James A.; Luk, Ting S.; Wang, Xuanjie; Narayanan, Shankar

Planck’s law predicts the distribution of radiation energy, color and intensity, emitted from a hot object at thermal equilibrium. The Law also sets the upper limit of radiation intensity, the blackbody limit. Recent experiments reveal that micro-structured tungsten can exhibit significant deviation from the blackbody spectrum. However, whether thermal radiation with weak non-equilibrium pumping can exceed the blackbody limit in the far field remains un-answered experimentally. Here, we compare thermal radiation from a micro-cavity/tungsten photonic crystal (W-PC) and a blackbody, which are both measured from the same sample and also in-situ. We show that thermal radiation can exceed the blackbody limit by >8 times at λ=1.7 μm resonant wavelength in the far-field. Our observation is consistent with a recent calculation by Wang and John performed for a 2D W-PC filament. This finding is attributed to non-equilibrium excitation of localized surface plasmon resonances coupled to nonlinear oscillators and the propagation of the electromagnetic waves through non-linear Bloch waves of the W-PC structure. This discovery could help create super-intense narrow band thermal light sources and even an infrared emitter with a laser-like input-output characteristic.

More Details

Experimental Evidence of the Lorentz-Like Effective Medium Resonance in Semiconductor Hyperbolic Metamaterials Using Strong Coupling to Plasmonic Metasurfaces

IEEE Transactions on Antennas and Propagation

Campione, Salvatore; Klem, John F.; Liu, Sheng; Montano, Ines; Sinclair, Michael B.; Luk, Ting S.

The Lorentz-like effective medium resonance (LEMR) exhibited by the longitudinal effective permittivity of semiconductor hyperbolic metamaterials (SHMs) has been known for some time. However, direct observation of this resonance proved to be difficult. Herein, we experimentally demonstrate its existence by strongly coupling SHMs to plasmonic metasurfaces. We consider four strong coupling implementations of SHMs that exhibit different LEMR absorption profiles (both in frequency and in strength) to validate our approach.

More Details

Ultraviolet to far-infrared dielectric function of n -doped cadmium oxide thin films

Physical Review Materials

Nolen, J.R.; Runnerstrom, Evan L.; Kelley, Kyle P.; Luk, Ting S.; Folland, Thomas G.; Cleri, Angela; Maria, Jon P.; Caldwell, Joshua D.

Spectroscopic ellipsometry and Fourier transform infrared spectroscopy were applied to extract the ultraviolet to far-infrared (150-33333cm-1) complex dielectric functions of high-quality, sputtered indium-doped cadmium oxide (In:CdO) thin crystalline films on MgO substrates possessing carrier densities (Nd) ranging from 1.1×1019cm-3 to 4.1×1020cm-3. A multiple oscillator fit model was used to identify and analyze the three major contributors to the dielectric function and their dependence on doping density: interband transitions in the visible, free-carrier excitations (Drude response) in the near- to far-infrared, and IR-active optic phonons in the far-infrared. More specifically, values pertinent to the complex dielectric function such as the optical band gap (Eg), are shown here to be dependent upon carrier density, increasing from approximately 2.5-3 eV, while the high-frequency permittivity (ϵ∞) decreases from 5.6 to 5.1 with increasing carrier density. The plasma frequency (ωp) scales as Nd, resulting in ωp values occurring within the mid- to near-IR, and the effective mass (m∗) was also observed to exhibit doping density-dependent changes, reaching a minimum of 0.11mo in unintentionally doped films (1.1×1019cm-3). Good quantitative agreement with prior work on polycrystalline, higher-doped CdO films is also demonstrated, illustrating the generality of the results. The analysis presented here will aid in predictive calculations for CdO-based next-generation nanophotonic and optoelectronic devices, while also providing an underlying physical description of the key properties dictating the dielectric response in this atypical semiconductor system.

More Details

Broadband, High-Speed, and Large-Amplitude Dynamic Optical Switching with Yttrium-Doped Cadmium Oxide

Advanced Functional Materials

Saha, Soham; Diroll, Benjamin T.; Shank, Joshua S.; Kudyshev, Zhaxylyk; Dutta, Aveek; Chowdhury, Sarah N.; Luk, Ting S.; Campione, Salvatore; Schaller, Richard D.; Shalaev, Vladimir M.; Boltasseva, Alexandra; Wood, Michael G.

Transparent conducting oxides, such as doped indium oxide, zinc oxide, and cadmium oxide (CdO), have recently attracted attention as tailorable materials for applications in nanophotonic and plasmonic devices such as low-loss modulators and all-optical switches due to their tunable optical properties, fast optical response, and low losses. In this work, optically induced extraordinarily large reflection changes (up to 135%) are demonstrated in bulk CdO films in the mid-infrared wavelength range close to the epsilon near zero (ENZ) point. To develop a better understanding of how doping level affects the static and dynamic optical properties of CdO, the evolution of the optical properties with yttrium (Y) doping is investigated. An increase in the metallicity and a blueshift of the ENZ point with increasing Y-concentrations is observed. Broadband all-optical switching from near-infrared to mid-infrared wavelengths is demonstrated. The major photoexcited carrier relaxation mechanisms in CdO are identified and it is shown that the relaxation times can be significantly reduced by increasing the dopant concentration in the film. This work could pave the way to practical dynamic and passive optical and plasmonic devices with doped CdO spanning wavelengths from the ultraviolet to the mid-infrared region.

More Details
Results 1–25 of 213
Results 1–25 of 213