Publications

Results 1–25 of 97

Search results

Jump to search filters

Stronger field-emission science via coupling novel nanoscale imaging techniques

Bussmann, Ezra B.; Ohta, Taisuke O.; Kazanowska, Barbara A.; Wang, George T.; Tandon, Rajan T.

We implemented a vacuum field emission electron microscope (FEM) using the electron optics of a low-energy /photoemission electron microscope (LEEM/PEEM). Historically, there have been other FEM hardware platforms, and the distinctive feature of our method is that it integrates with the LEEM/PEEM and associated techniques, enabling a powerful multi-capability toolset for studying fundamental materials properties underpinning field emission (FE) and vacuum arc initiation. Typically, LEEM is used to image surface structure, which influences both work function and electric field distribution near a surface, while PEEM is used to map photoelectric work function across a surface. Our FEM adds the capability for spatially-correlated coincident-site measurements of FE currents to go-along with structure and work function. LEEM, PEEM, and our FEM implementation achieve nanoscale spatial resolution relevant for materials studies in nanoscience/engineering. Our approach requires a straightforward calibration of the electron optics to enable focused FEM imaging under intentional electric field variation. We demonstrate the FEM approach by imaging field emitter arrays relevant for vacuum nanoelectronics. We demonstrate submicron spatial resolution and dynamic measurement of FE versus applied electric field. We anticipate this capability will enable fundamental structure-function studies of FE and arc initiation.

More Details

Viscoelasticity of glass-forming materials: What about inorganic sealing glasses?

Conference Proceedings of the Society for Experimental Mechanics Series

Chambers, Robert S.; Stavig, Mark E.; Tandon, Rajan T.

Glass forming materials like polymers exhibit a variety of complex, nonlinear, time-dependent relaxations in volume, enthalpy and stress, all of which affect material performance and aging. Durable product designs rely on the capability to predict accurately how these materials will respond to mechanical loading and temperature regimes over prolonged exposures to operating environments. This cannot be achieved by developing a constitutive framework to fit only one or two types of experiments. Rather, it requires a constitutive formalism that is quantitatively predictive to engineering accuracy for the broad range of observed relaxation behaviors. Moreover, all engineering analyses must be performed from a single set of material model parameters. The rigorous nonlinear viscoelastic Potential Energy Clock (PEC) model and its engineering phenomenological equivalent, the Simplified Potential Energy Clock (SPEC) model, were developed to fulfill such roles and have been applied successfully to thermoplastics and filled and unfilled thermosets. Recent work has provided an opportunity to assess the performance of the SPEC model in predicting the viscoelastic behavior of an inorganic sealing glass. This presentation will overview the history of PEC and SPEC and describe the material characterization, model calibration and validation associated with the high Tg (~460 °C) sealing glass.

More Details

Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses

Journal of Non-Crystalline Solids

Chambers, Robert S.; Tandon, Rajan T.; Stavig, Mark E.

To analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practical methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.

More Details
Results 1–25 of 97
Results 1–25 of 97