Publications

Results 1–25 of 32

Search results

Jump to search filters

Winter Storm Scenario Generation for Power Grids Based on Historical Generator Outages

Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference

Austgen, Brent; Garcia, Manuel J.; Pierre, Brian J.; Hasenbein, John; Kutanoglu, Erhan

We present a procedure for randomly generating realistic steady-state contingency scenarios based on the historical outage data from a particular event. First, we divide generation into classes and fit a probability distribution of outage magnitude for each class. Second, we provide a method for randomly synthesizing generator resilience levels in a way that preserves the data-driven probability distributions of outage magnitude. Finally, we devise a simple method of scaling the storm effects based on a single global parameter. We apply our methods using data from historical Winter Storm Uri to simulate contingency events for the ACTIVSg2000 synthetic grid on the footprint of Texas.

More Details

Risk-Averse Investment Optimization for Power System Resilience to Winter Storms

Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference

Garcia, Manuel J.; Austgen, Brent; Pierre, Brian J.; Hasenbein, John; Kutanoglu, Erhan

We propose a two-stage scenario-based stochastic optimization problem to determine investments that enhance power system resilience. The proposed optimization problem minimizes the Conditional Value at Risk (CVaR) of load loss to target low-probability high-impact events. We provide results in the context of generator winterization investments in Texas using winter storm scenarios generated from historical data collected from Winter Storm Uri. Results illustrate how the CVaR metric can be used to minimize the tail of the distribution of load loss and illustrate how risk-Aversity impacts investment decisions.

More Details

Primary Frequency Response Reserve Products for Inverter-Based Resources

Proceedings of the Annual Hawaii International Conference on System Sciences

Garcia, Manuel J.; Baldick, Ross; Wilches-Bernal, Felipe

Primary frequency control in power systems is being challenged by the large-scale integration of inverter-based resources (IBRs) because they do not typically respond to frequency fluctuations. This paper suggests introducing new reserve products into the electricity market that provide incentive for IBRs to contribute to primary frequency control in ways that take advantage of their fast-acting capabilities. In addition to a Primary Frequency Response (PFR) reserve product, which accommodates standard droop control, we suggest introducing a Fast Frequency Response (FFR) reserve product, a reserve product for Virtual Inertia (VI), which is also known as synthetic inertia, and an inertia product. We adopt a reserve requirement that guarantees sufficient primary frequency response reserve to adequately arrest frequency decline in response to a large generator outage within a certain margin. We place this reserve requirement into a real-time co-optimization problem, derive prices for each product and analyze the incentives provided to IBRs.

More Details

Optimal Black-Start Restoration Assisted by Mobile Energy Storage

IEEE Power and Energy Society General Meeting

Yip, Joshua J.; Garcia, Manuel J.; Pierre, Brian J.; Santoso, Surya

This paper studies a novel mixed-integer linear programming (MILP) formulation on the application of mobile energy storage (MES) to assist with black-start restoration following the full blackout of an electrical network. By synthesizing techniques in the literature to model generator black start and MES activity, the formulation is the first to integrate the two concepts. Furthermore, it recognizes that the manner in which MES facilitates black-start (BS) restoration may differ depending on what component damages occurred during the event that induced the blackout. Within the IEEE 14-Bus System, testing of the formulation has not only confirmed its efficacy but also underscored circumstances where BS restoration could especially benefit from MES intervention in practice. With an MES sized at 2.59% of total MW generation capacity, in certain damage configuration categories the median load energy unserved is reduced by as much as 45.52 MWh (8.26%), and the median final load supplied is raised by as much as 22.98 MW (10.39%).

More Details

Requirements for Interdependent Reserve Types Providing Primary Frequency Control

IEEE Transactions on Power Systems

Garcia, Manuel J.; Baldick, Ross

As renewable energy penetration increases and system inertia levels drop, primary frequency control is becoming a critical concern in relatively small interconnections such as the Electric Reliability Council of Texas (ERCOT). To address this problem ERCOT is implementing a number of market rule changes including the introduction of a new Fast Frequency Response (FFR) reserve type to the electricity market. This FFR reserve type aims to help the traditional Primary Frequency Response (PFR) reserve type in arresting frequency decline in the event of a large generator outage. This paper derives reserve requirements to ensure sufficient reserve to arrest frequency decline before reaching the critical frequency threshold while coupling PFR reserve, FFR reserve, and system inertia. The general reserve requirement places limits on the amount of PFR reserve that can be provided by each unit based on its ramping capabilities. Two such limits are derived from first principles and another is proposed that is capable of accommodating the equivalency ratio introduced in previous work. These PFR reserve limits also provide first principles insight into equivalency ratios, which have only been studied empirically in the past. High-level insights are provided on a large Texas test case.

More Details
Results 1–25 of 32
Results 1–25 of 32