Publications

14 Results

Search results

Jump to search filters

Mesh Generation for Microstructures

Owen, Steven J.; Ernst, Corey D.; Brown, Judith A.; Lim, Hojun L.; Long, Kevin N.; Laros, James H.; Moore, Nathan W.; Battaile, Corbett C.; Rodgers, Theron R.

A parallel, adaptive overlay grid procedure is proposed for use in generating all-hex meshes for stochastic (SVE) and representative (RVE) volume elements in computational materials modeling. The mesh generation process is outlined including several new advancements such as data filtering to improve mesh quality from voxelated and 3D image sources, improvements to the primal contouring method for constructing material interfaces and pillowing to improve mesh quality at boundaries. We show specific examples in crystal plasticity and syntactic foam modeling that have benefitted from the proposed mesh generation procedure and illustrate results of the procedure with several practical mesh examples.

More Details

Sculpt: Automatic Parallel Hexahedral Mesh Generation

Owen, Steven J.; Ernst, Corey D.; Stimpson, Clint

Sculpt is a companion application to Cubit designed to run in parallel for generating all-hex meshes of complex geometry. It uses a unique overlay-grid procedure that extracts surfaces from a volume-fraction representation of the geometry. This allows for fast, automatic, fault-tolerant meshing in a high-performance computing (HPC) environment. Although Sculpt can be driven from Cubit as a GUI front-end, Sculpt was developed as a separate application so that it can be run independently from Cubit on HPC computing platforms. It was also designed as a separable software library so it can be easily integrated as an in-situ meshing solution within other codes. This work provides a brief technical discussion of the algorithms used in Sculpt as well as a complete user's manual. It includes details of the Cubit interface to Sculpt and the complete manual for the stand-alone application, including examples.

More Details

A template-based approach for parallel hexahedral two-refinement

CAD Computer Aided Design

Owen, Steven J.; Shih, Ryan M.; Ernst, Corey D.

We provide a template-based approach for generating locally refined all-hex meshes. We focus specifically on refinement of initially structured grids utilizing a 2-refinement approach where uniformly refined hexes are subdivided into eight child elements. The refinement algorithm consists of identifying marked nodes that are used as the basis for a set of four simple refinement templates. The target application for 2-refinement is a parallel grid-based all-hex meshing tool for high performance computing in a distributed environment. The result is a parallel consistent locally refined mesh requiring minimal communication and where minimum mesh quality is greater than scaled Jacobian 0.3 prior to smoothing.

More Details

Hexahedral Mesh Generation for Computational Materials Modeling

Procedia Engineering

Owen, Steven J.; Brown, Judith A.; Ernst, Corey D.; Lim, Hojun L.; Long, Kevin N.

A parallel, adaptive overlay grid procedure is proposed for use in generating all-hex meshes for stochastic (SVE) and representative (RVE) volume elements in computational materials modeling. The mesh generation process is outlined including several new advancements such as data filtering to improve mesh quality from voxelated and 3D image sources, improvements to the primal contouring method for constructing material interfaces and pillowing to improve mesh quality at boundaries. We show specific examples in crystal plasticity and syntactic foam modeling that have benefitted from the proposed mesh generation procedure and illustrate results of the procedure with several practical mesh examples.

More Details
14 Results
14 Results