Accelerated Oxidation of Epoxy Thermosets with Increased O2 Pressure
Polymer Degradation and Stability
Polymer Degradation and Stability
Polymer Degradation and Stability
Polymer Degradation and Stability
Additive Manufacturing
Material extrusion printing of reactive resins and inks present a unique challenge due to the time-dependent nature of the rheological and chemical properties they possess. As a result, careful print optimization or process control is important to obtain consistent, high quality prints via additive manufacturing. We present the design and use of a near-infrared (NIR) flow through cell for in situ chemical monitoring of reactive resins during printing. Differences between in situ and off-line benchtop measurements are presented and highlight the need for in-line monitoring capability. Additionally, in-line extrusion force monitoring and off-line post inspection using machine vision is demonstrated. By combining NIR and extrusion force monitoring, it is possible to follow cure reaction kinetics and viscosity changes during printing. When combined with machine vision, the ability to automatically identify and quantify print artifacts can be incorporated on the printing line to enable real-time, artificial intelligence-assisted quality control of both process and product. Together, these techniques form the building blocks of an optimized closed-loop process control strategy when complex reactive inks must be used to produce printed hardware.
Polymer Degradation and Stability
Polymer degradation under aggressive environmental stressors often develops heterogeneities due to diffusion-limited reaction phenomena. This is well established for diffusion-limited oxidation (DLO), which is known to occur for most polymeric materials at elevated temperatures but has been less summarized for the conditions of diffusion-limited hydrolysis (DLH). An overview of hydrolysis for several materials and a computational model, analogous to the underlying equations for DLO, able to define this diffusion-reaction system is presented. A systematic study of the influence of various parameters, such as water diffusivity, reaction rate and order, and a more in-depth focus on residual isocyanate hydrolysis in a polymeric methylene diphenyl diisocyanate (pMDI) based polyurethane (PU) foam is given. For this system, we present experimental data for model ‘input’ parameters and discuss predictions for different conditions. We conceptually compare the behavior of diffusion-limited oxidation to that of diffusion-limited hydrolysis (DLH). With the mathematical framework and key material properties presented herein, any DLH phenomena following Fickian diffusion behavior can be understood, modeled, and predicted.
Polymer Degradation and Stability
The most revealing indicator for oxidative processes or state of degraded plastics is usually carbonyl formation, a key step in materials degradation as part of the carbon cycle for man-made materials. Hence, the identification and quantification of carbonyl species with infrared spectroscopy have been the method of choice for generations, thanks to their strong absorbance and being an essential intermediate in carbon oxidation pathways. Despite their importance, precise identification and quantification can be challenging and rigorous fully traceable data are surprisingly rare in the existing literature. An overview of the complexity of carbonyl quantification is presented by the screening of reference compounds in solution with transmission and polymer films with ATR IR spectroscopy, and systematic data analyses. Significant variances in existing data and their past use have been recognized. Guidance is offered how better measurements and data reporting could be accomplished. Experimental variances depend on the combination of uncertainty in exact carbonyl species, extinction coefficient, contributions from neighboring convoluting peaks, matrix interaction phenomena and instrumental variations in primary IR spectral acquisition (refractive index and penetration depth for ATR measurements). In addition, diverging sources for relevant extinction coefficients may exist, based on original spectral acquisition. For common polymer degradation challenges, a relative comparison of carbonyl yields for a material is easily accessible, but quantification for other purposes, such as degradation rates and spatially dependent interpretation, requires thorough experimental validation. All variables highlighted in this overview demonstrate the significant error margins in carbonyl quantification, with exact carbonyl species and extinction coefficients already being major contributors on their own.
European Polymer Journal
Four drug-conjugated poly(2-alkyl-2-oxazoline) (PAOx) networks with different hydrophobicity were synthesized via copolymerization of either 2-methyl-, 2-ethyl-, 2-propyl- or 2-butyl-2-oxazoline with the functional monomer, 2-dec-9-enyl-2-oxazoline. The incorporation of a labile ester linkage between the polymer and the drug benazepril allowed for sustained drug release over periods of months with the release rates strongly depending on the hydrophobicity of the polymer pendant groups. Drug loading of 13 ± 2 wt% was used with 10 mol% crosslinking sites simply by tuning the thiol-ene stoichiometry. The networks exhibited negligible cell toxicity but cell repulsion was observed for hydrogels based on poly(2-methyl-2-oxazoline) and poly(2-ethyl-2-oxazoline) while those based on poly(2-n-propyl-2-oxazoline) and poly(2-n-butyl-2-oxaoline) showed cell adhesion. These results suggest that PAOx networks have great potential as drug delivery devices for long-lasting drug release applications.
Abstract not provided.
Abstract not provided.
Polymer Degradation and Stability
The application, continued performance, and degradation behavior of polymers often depends on their interaction with small organic or gaseous volatiles. Understanding the underlying permeation and diffusion properties of materials is crucial for predicting their barrier properties (permeant flux), drying behavior, solvent loss or tendency to trap small molecules, as well as their interaction with materials in the vicinity due to off-gassing phenomena, perhaps leading to compatibility concerns. Further, the diffusion of low M w organics is also important for mechanistic aspects of degradation processes. Based on our need for improved characterization methods, a FTIR-based spectroscopic gas/volatile quantification setup was designed and evaluated for determination of the diffusion, desorption and transport behavior of small IR-active molecules in polymers. At the core of the method, a modified, commercially available IR transmission gas cell monitors time-dependent gas concentration. Appropriate experimental conditions, e.g. desorption or permeation under continuous flow or static gas conditions, are achieved using easily adaptable external components such as flow controllers and sample ampoules. This study presents overview approaches using the same IR detection methodology to determine diffusivity (desorption into a static gas environment, continuous gas flow, or intermittent desorption) and permeability (static and dynamic flow detection). Further, the challenges encountered for design and setup of IR gas quantification experiments, related to calibration and gas interaction, are presented. These methods establish desorption and permeation behavior of solvents (water and methanol), CO 2 off-gassing from foam, and offer simultaneous measurements of the permeation of several gases in a gas mixture (CO 2 , CO and CH 4 ) through polymer films such as epoxy and Kapton. They offer complementary guidance for material diagnostics and understanding of basic properties in sorption and transport behavior often of relevance to polymer degradation or materials reliability phenomena.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Polymer Degradation and Stability
Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO2, and CO as fundamental signatures of degradation kinetics is required. This study describes an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapid acquisition FTIR spectrometer for time resolved successive spectra. The volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ∼50 μg water or CO2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. This approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.
Abstract not provided.