Hydrothermal experiments on engineered barrier system (EBS) materials were conducted to characterize high temperature interactions between bentonite and candidate waste container steels (304SS, 316SS, low-C steel) for deep geological disposition of nuclear spent fuel. In this study, hydrothermal experiments were performed using Dickson reaction cells at temperatures and pressure of up to 300 °C and 15–16 MPa, respectively, for four to six weeks. Wyoming bentonite was saturated with a 1900 ppm K-Ca-Na-Cl solution in combination with stainless and low-C steel coupons. Authigenic Fe-saponite precipitated utilizing steel as a growth substrate with Fe being supplied by steel corrosion. Concurrent with Fe-saponite formation, sulfides precipitated from sulfide-bearing fluids, from pyrite dissolution, near the steel interface. Sulfide mineral formation is dependent on the steel substrate composition: stainless steel produced pentlandite ((Ni, Fe)9S8) and millerite (NiS), whereas low C steel generated pyrrhotite (Fe7S8). The presence of sulfides suggests highly reduced environments at the steel-clay barrier interface potentially influencing overall steel corrosion rates and (re)passivation mechanisms. Finally, results of this research show that nuclear waste steel container material may act as a substrate for mineral growth in response to corrosion during hydrothermal interactions with bentonite barriers.
The purpose of this study was to explore the flow rates and aerosol retention of an engineered microchannel with characteristic dimensions similar to those of stress corrosion cracks (SCCs) that could form in dry cask storage systems (DCSS) for spent nuclear fuel. Additionally, pressure differentials covering the upper limit of commercially available DCSS were studied. Given the scope and resources available, these data sets should be considered preliminary and are intended to demonstrate a new capability to characterize SCC under well-controlled boundary conditions. The gap of the microchannel tested was 28.9 gm (0.00110 in.), the width was 12.7 mm (0.500 in.), and the length was 8.86 mm (0.349 in.). Over a nine-hour period, the average mass concentration upstream of the microchannel was 0.048 mg/m3 while the average concentration downstream was 0.030 mg/m3. By the end of the test, the mass of aerosols that entered the test section upstream of the microchannel was 0.207 mg and the mass of aerosols that exited the microchannel was 0.117 mg. Therefore, 44% of the aerosols available for transmission was retained upstream of microchannel.
The goal of the DOE OE ESS Safety Roadmap1 is to foster confidence in the safety and reliability of energy storage systems (ESSs). Three interrelated objectives support the realization of that goal: research, codes and standards, and communication/coordination.
This report documents the completion of milestone STPRO4-7 Kokkos R&D: Remote Memory Spaces for One-Sided Halo-Exchange. The goal of this milestone was to develop and deploy an initial capability to support PGAS like communication models integrated into Kokkos via Remote Memory Spaces. The team developed semantic requirements for Remote Memory Spaces and implemented a prototype library leveraging four different communication libraries: libQUO, SHMEM, MPI-OneSided and NVSHMEM. In conjunction with ADCD02-COPA the Remote Memory Space capability was used in ExaMiniMD — a Molecular Dynamics Proxy Application — to explore the current state of the technology and its usability. The obtained results demonstrate that usability is very good, allowing a significant simplification communication routines, but performance is still lacking.
This report documents the completion of milestone STPRO4-6 Kokkos Support for ASC applications and libraries. The team provided consultation and support for numerous ASC code projects including Sandias SPARC, EMPIRE, Aria, GEMMA, Alexa, Trilinos, LAMMPS and nimbleSM. Over the year more than 350 Kokkos github issues were resolved, with over 220 requiring fixes and enhancements to the code base. Resolving these requests, with many of them issued by ASC code teams, provided applications with the necessary capabilities in Kokkos to be successful.
This report documents the completion of milestone STPRO4-5 Kokkos interoperability with general SIMD types to force vectorization on ATS-1. The Kokkos team worked with application developers to enable the utilization of SIMD intrinsics, which allowed up to 3.7x improvement of the affected kernels on ATS-1 in a proxy application. SIMD types are now deployed in the production code base.
This report documents the completion of milestone STPRO4-4 Kokkos back-ends research, collaborations, development, optimization, and documentation. The Kokkos team updated its existing backend to support the software stack and hardware of DOE's Sierra, Summit and Astra machines. They also collaborated with ECP PathForward vendors on developing backends for possible exa-scale architectures. Furthermore, the team ramped up its engagement with the ISO/C++ committee to accelerate the adoption of features important for the HPC community into the C++ standard.
This report documents the completion of milestone STPRO4-4 Kokkos back-ends research, collaborations, development, optimization, and documentation. The Kokkos team updated its existing backend to support the software stack and hardware of DOE's Sierra, Summit and Astra machines. They also collaborated with ECP PathForward vendors on developing backends for possible exa-scale architectures. Furthermore, the team ramped up its engagement with the ISO/C++ committee to accelerate the adoption of features important for the HPC community into the C++ standard.
Edstrand, Adam; Sun, Yiyang; Schmid, Peter J.; Taira, Kunihiko; Cattafesta, Louis N.
Designing effective control for complex three-dimensional flow fields proves to be non-trivial. Often, intuitive control strategies lead to suboptimal control. To navigate the control space, we use a linear parabolized stability analysis to guide the design of a control scheme for a trailing vortex flow field aft of a NACA0012 half-wing at an angle of attack $\unicode[STIX]{x1D6FC}=5^{\circ }$ and a chord-based Reynolds number $Re=1000$. The stability results show that the unstable mode with the smallest growth rate (fifth wake mode) provides a pathway to excite a vortex instability, whereas the principal unstable mode does not. Inspired by this finding, we perform direct numerical simulations that excite each mode with body forces matching the shape function from the stability analysis. Furthermore, relative to the uncontrolled case, the controlled flows show increased attenuation of circulation and peak streamwise vorticity, with the fifth-mode-based control set-up outperforming the principal-mode-based set-up. From these results, we conclude that a rudimentary linear stability analysis can provide key insights into the underlying physics and help engineers design effective physics-based flow control strategies.
Marilyn mentioned that we will need to submit the SQL query to a review in order to ensure it is releasable to the IG. To whom should the SQL query be submitted? Please find the SQL query below.
We introduce MPAS-Albany Land Ice (MALI) v6.0, a new variable-resolution land ice model that uses unstructured Voronoi grids on a plane or sphere. MALI is built using the Model for Prediction Across Scales (MPAS) framework for developing variable-resolution Earth system model components and the Albany multi-physics code base for the solution of coupled systems of partial differential equations, which itself makes use of Trilinos solver libraries. MALI includes a three-dimensional first-order momentum balance solver (Blatter-Pattyn) by linking to the Albany-LI ice sheet velocity solver and an explicit shallow ice velocity solver. The evolution of ice geometry and tracers is handled through an explicit first-order horizontal advection scheme with vertical remapping. The evolution of ice temperature is treated using operator splitting of vertical diffusion and horizontal advection and can be configured to use either a temperature or enthalpy formulation. MALI includes a mass-conserving subglacial hydrology model that supports distributed and/or channelized drainage and can optionally be coupled to ice dynamics. Options for calving include eigencalving, which assumes that the calving rate is proportional to extensional strain rates. MALI is evaluated against commonly used exact solutions and community benchmark experiments and shows the expected accuracy. Results for the MISMIP3d benchmark experiments with MALI's Blatter-Pattyn solver fall between published results from Stokes and L1L2 models as expected. We use the model to simulate a semi-realistic Antarctic ice sheet problem following the initMIP protocol and using 2 km resolution in marine ice sheet regions. MALI is the glacier component of the Energy Exascale Earth System Model (E3SM) version 1, and we describe current and planned coupling to other E3SM components.
We present a novel formulation for startup cost computation in the unit commitment problem (UC). Both the proposed formulation and existing formulations in the literature are placed in a formal, theoretical dominance hierarchy based on their respective linear programming relaxations. The proposed formulation is tested empirically against existing formulations on large-scale unit commitment instances drawn from real-world data. While requiring more variables than the current state-of-the-art formulation, our proposed formulation requires fewer constraints, and is empirically demonstrated to be as tight as a perfect formulation for startup costs. This tightening reduces the computational burden in comparison to existing formulations, especially for UC instances with large variability in net-load due to renewables production.
Scott, Ethan A.; Hattar, Khalid M.; Rost, Christina M.; Gaskins, John T.; Fazli, Mehrdad; Ganski, Claire; Li, Chao; Bai, Tingyu; Wang, Yekan; Esfarjani, Keivan; Goorsky, Mark; Hopkins, Patrick E.
Fundamental theories predict that reductions in thermal conductivity from point and extended defects can arise due to phonon scattering with localized strain fields. To experimentally determine how these strain fields impact phonon scattering mechanisms, we employ ion irradiation as a controlled means of introducing strain and assorted defects into the lattice. In particular, we observe the reduction in thermal conductivity of intrinsic natural silicon after self-irradiation with two different silicon isotopes, Si+28 and Si+29. Irradiating with an isotope with a nearly identical atomic mass as the majority of the host lattice produces a damage profile lacking mass impurities and allows us to assess the role of phonon scattering with local strain fields on the thermal conductivity. Our results demonstrate that point defects will decrease the thermal conductivity more so than spatially extended defect structures assuming the same volumetric defect concentrations due to the larger strain per defect that arises in spatially separated point defects. With thermal conductivity models using density functional theory, we show that for a given defect concentration, the type of defect (i.e., point vs extended) plays a negligible role in reducing the thermal conductivity compared to the strain per defect in a given volume.
Ducted fuel injection is a strategy that can be used to enhance the fuel/charge-gas mixing within the combustion chamber of a direct-injection compression-ignition engine. The concept involves injecting the fuel through a small tube within the combustion chamber to make the most fuel-rich regions of the micture in the autoignition zone leaner relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). This study is a follow-on to initial proof-of-concept experiments that also were conducted in a constant-volume combustion vessel. While the initial natural luminosity imaging experiments demonstrated that ducted fuel injection lowers soot incandescence dramatically, this study adds a more quantitative diffuse back-illumination diagnostic to measure soot mass, as well as investigates the effects on performance of varying duct geometry (axial gap, length, diameter, and inlet and outlet shapes), ambient density, and charge-gas dilution level. The result is that ducted fuel injection is further proven to be effective at lowering soot by 35–100% across a wide range of operating conditions and geometries, and guidance is offered on geometric parameters that are most important for improving performance and facilitating packaging for engine applications.
The reduced elastic modulus of a material is measured with a nanoindenter probe that is operated in the tapping mode. The resonant frequency of a freely oscillating cantilever is reduced when contact is made between the indenter tip and surface under investigation. It's shown using elasticity theory that the elastic deformation is a function of the indenter tip radius. A deeper penetration within the elastic range can change the tip radius, and introduce an error of 10% in calculating the reduced elastic modulus.
A comprehensive V&V study of hypersonic flow in SPARC validated against several experiments was produced. This work was successfully completed as an official ASC L2 milestone with an external review of the team's work. Our work has provided a basis for utilizing SPARC as credible analysis tool for hypersonic re-entry flows. The V&V process has been exercised in full breadth including applicable frameworks, professional standards, code and solution verification, calibration, sensitivity analysis and parametric uncertainty.
Kokkos and DARMA teams worked together on several significant proposals for the C++ standards body, including the MDSpan and Exectutors proposals. This work has potential for long-term impact into the language standard reflecting core abstractions needed for our HPC programming and development efforts. Kokkos team collaborating with AMD via the Path Forward effort. This is advancing Kokkos support for [AMD] backends, necessary for future exascale/HPC architectures.
Very recently, we have introduced correlation consistent effective core potentials (ccECPs) derived from many-body approaches with the main target being its use in explicitly correlated methods but also in mainstream approaches. The ccECPs are based on reproducing excitation energies for a subset of valence states, i.e., achieving a near-isospectrality between the original and pseudo Hamiltonians. Additionally, binding curves of dimer molecules have been used for refinement and overall improvement of transferability over a range of bond lengths. Here we apply similar ideas to the second row elements and study several aspects of the constructions in order to find the optimal (or nearly-optimal) solutions within the chosen ECP forms with 3s, 3p valence space (Ne-core). New constructions exhibit accurate low-lying atomic excitations and equilibrium molecular bonds (on average within ≈ 0.03 eV and 3 mA), however, the errors for A1 and Si oxide molecules at short bond lengths are notably larger for both ours and existing ECPs. Assuming this limitation, our ccECPs show a systematic balance between the criteria of atomic spectra accuracy and transferability for molecular bonds. Finally, in order to provide another option with much higher uniform accuracy, we also construct He-core ECPs for the whole row with typical discrepancies of ≈ 0.01 eV or smaller.
Some of the most remarkable recent developments in metal–organic framework (MOF) performance properties can only be rationalized by the mechanical properties endowed by their hybrid inorganic–organic nanoporous structures. While these characteristics create intriguing application prospects, the same attributes also present challenges that will need to be overcome to enable the integration of MOFs with technologies where these promising traits can be exploited. In this review, emerging opportunities and challenges are identified for MOF-enabled device functionality and technological applications that arise from their fascinating mechanical properties. This is discussed not only in the context of their more well-studied gas storage and separation applications, but also for instances where MOFs serve as components of functional nanodevices. Recent advances in understanding MOF mechanical structure–property relationships due to attributes such as defects and interpenetration are highlighted, and open questions related to state-of-the-art computational approaches for quantifying their mechanical properties are critically discussed.
A stochastic sparse particle approach is coupled with an artificial thickening flame (ATF) model for large eddy simulations (LES) to predict a series of turbulent premixed-stratified flames with and without shear and stratification. The thickened reaction progress variable serves as reference variable for the multiple mapping conditioning (MMC) mixing model which emulates turbulent mixing of the stochastic particles. The key feature of MMC is to enforce localness in this reference space when particle pairs are mixed and prevents unphysical mixing of burnt and unburnt fluid across the flame front. We apply MMC-ATF to three flames of a series of turbulent stratified flames and validate the method by comparison with experimental data. The new measurements feature increased accuracy in comparison to previously published data of the same flames due to a better signal-to-noise ratio and a setup which is less prone to beam steering. All flame locations are well predicted by the LES-ATF approach and an analysis of the MMC particle statistics demonstrates that MMC preserves the flamelet-like behaviour in regions where the experiments show low scatter around the flamelet solution. Predicted (local) deviations from the flamelet-solution are comparable to deviations observed in the measurements and variations in the flame structure due to differences in stratification and shear are reasonably well captured by the method.
Schneider, Silvan; Geyer, Dirk; Magnotti, Gaetano; Dunn, Matthew J.; Barlow, R.S.; Dreizler, Andreas
To explore the effect of H2 addition (20 percent by volume) on stratified-premixed methane combustion in a turbulent flow, an experimental investigation on a new flame configuration of the Darmstadt stratified burner is conducted here. Major species concentrations and temperature are measured with high spatial resolution by 1D Raman-Rayleigh scattering. A conditioning on local equivalence ratio (range from φ = 0.45 to φ = 1.25) and local stratification is applied to the large dataset and allows to analyze the impact of H2 addition on the flame structure. The local stratification level is determined as Δφ/ΔT at the location of maximum CO mass fraction for each instantaneous flame realization. Due to the H2 addition, preferential diffusion of H2 is different than in pure methane flames. In addition to diffusing out of the reaction zone where it is formed, particularly in rich conditions, H2 also diffuses from the cold reactant mixture into the flame front. For rich conditions (φ = 1.05 to φ = 1.15) H2 mass fractions are significantly elevated within the intermediate temperature range compared to fully-premixed laminar flame simulations. This elevation is attributed to preferential transport of H2 into the rich flame front from adjacent even richer regions of the flow. Additionally, when the local stratification across the flame front is taken into account, it is revealed that the state-space relation of H2 is not only a function of the local stoichiometry but also the local stratification level. In these flames H2 is the only major species showing sensitivity of the state-space relation to an equivalence ratio gradient across the flame front.
The multiple scattering of light presents major challenges in realizing useful in vivo imaging at tissue depths of more than about one millimeter, where many answers to health questions lie. Visible through near-infrared photons can be readily and safely detected through centimeters of tissue; however, limited information is available for image formation. One strategy for obtaining images is to model the photon transport and a simple incoherent model is the diffusion equation approximation to the Boltzmann transport equation. Such an approach provides a prediction of the mean intensity of heavily scattered light and hence provides a forward model for optimization-based computational imaging. While diffuse optical imaging methods have received substantial attention, they remain restricted in terms of resolution because of the loss of high-spatial-frequency information that is associated with the multiple scattering of photons. Consequently, only relatively large inhomogeneities, such as tumors or organs in small animals, can be effectively resolved. Here, we introduce a superresolution imaging approach based on point localization in a diffusion framework that enables over two orders of magnitude improvement in the spatial resolution of diffuse optical imaging. The method is demonstrated experimentally by localizing a fluorescent inhomogeneity in a highly scattering slab and characterizing the localization uncertainty. The approach allows imaging through centimeters of tissue with a resolution of tens of microns, thereby enabling cells or cell clusters to be resolved. More generally, this high-resolution imaging approach could be applied with any physical transport or wave model and hence to a broad class of physical problems. Paired with a suitable optical contrast mechanism, as can be realized with targeted fluorescent molecules or genetically modified animals, superresolution diffuse imaging should open alternative dimensions for in vivo applications.
Sandia performs work safely, in a manner that ensures adequate protection for the Members of the Workforce, the public, and the environment; is accountable for the safe performance of work; exercises a degree of care commensurate with the work and associated hazards; and integrates environment, safety, and health management into work planning and execution.
We show that olefin metathesis can be used in an extremely simple process to rapidly alter the morphology of self-assembled poly(butadiene-b-ethylene oxide) (PB-PEO) dispersions in situ. The addition of a water-insoluble Hoveyda-Grubbs catalyst to aqueous assemblies of PB-PEO leads to degradation of the hydrophobic PB block by well-established metathesis pathways and a concomitant change in the composition of the block copolymer. This phenomenon drives morphological transitions characterized by rapidly decreasing sizes of the self-assembled aggregates, the ultimate extent of which is readily controlled by catalyst concentration. Exemplary cases are presented in which transitions from worm-like micelles to spherical micelles or from vesicles to worm-like micelles can be accomplished within minutes.
This report documents the outcome from the ASC ATDM Level 2 Milestone 6358: Assess Status of Next Generation Components and Physics Models in EMPIRE. This Milestone is an assessment of the EMPIRE (ElectroMagnetic Plasma In Realistic Environments) application and three software components. The assessment focuses on the electromagnetic and electrostatic particle-in-cell solutions for EMPIRE and its associated solver, time integration, and checkpoint-restart components. This information provides a clear understanding of the current status of the EMPIRE application and will help to guide future work in FY19 in order to ready the application for the ASC ATDM L1 Milestone in FY20. It is clear from this assessment that performance of the linear solver will have to be a focus in FY19.
In this paper we describe a method for controlling both the residual stress and the through-thickness stress gradient of aluminum nitride (AlN) thin films using a multi-step deposition process that varies the applied radio frequency (RF) substrate bias. The relationship between the applied RF substrate bias and the AlN residual stress is characterized using AlN films grown on oxidized silicon substrates is determined using 100 nm-1.5 μm thick blanket AlN films that are deposited with 60-100 W applied RF biases; the stress-bias relationship is found to be well described using a power law relationship. Using this relationship, we develop a model for varying the RF bias in a series of discrete deposition steps such that each deposition step has zero average stress. The applied RF bias power in these steps is tailored to produce AlN films that have minimized both the residual stress and the film stress gradient. AlN cantilevers were patterned from films deposited using this technique, which show reduced curvature compared to those deposited using a single RF bias setting, indicating a reduction of the stress gradient in the films.
Mystery surrounds the transition from gas-phase hydrocarbon precursors to terrestrial soot and interstellar dust, which are carbonaceous particles formed under similar conditions. Although polycyclic aromatic hydrocarbons (PAHs) are known precursors to high-temperature carbonaceous-particle formation, the molecular pathways that initiate particle formation are unknown. We present experimental and theoretical evidence for rapid molecular clustering–reaction pathways involving radicals with extended conjugation. These radicals react with other hydrocarbon species to form covalently bound complexes that promote further growth and clustering by regenerating resonance-stabilized radicals through low-barrier hydrogen-abstraction and hydrogen-ejection reactions. Such radical–chain reaction pathways may lead to covalently bound clusters of PAHs and other hydrocarbons that would otherwise be too small to condense at high temperatures, thus providing the key mechanistic steps for rapid particle formation and surface growth by hydrocarbon chemisorption.
Hyperelastic foams have excellent impact energy absorption capability and can experience full recovery following impact loading. Consequently, hyperelastic foams are selected for different applications as shock isolators. Obtaining accurate intrinsic dynamic compressive properties of the hyperelastic foams has become a crucial step in shock isolation design and evaluation. Radial inertia is a key issue in dynamic characterization of soft materials. Radial inertia induced stress in the sample is generally caused by axial acceleration and large deformation applied to a soft specimen. In this study, Poisson's ratio of a typical hyperelastic foam-silicone foam-was experimentally characterized under high strain rate loading and was observed to drastically change across the densification process. A transition in the Poisson's ratio of the silicone foam specimen during dynamic compression generated radial inertia which consequently resulted in additional axial stress in the silicone foam sample. A new analytical method was developed to address the Poisson's ratio-induced radial inertia effects for hyperelastic foams during high rate compression.
GaN is an attractive material for high-power electronics due to its wide bandgap and large breakdown field. Verticalgeometry devices are of interest due to their high blocking voltage and small form factor. One challenge for realizing complex vertical devices is the regrowth of low-leakage-current p-n junctions within selectively defined regions of the wafer. Presently, regrown p-n junctions exhibit higher leakage current than continuously grown p-n junctions, possibly due to impurity incorporation at the regrowth interfaces, which consist of c-plane and non-basal planes. Here, we study the interfacial impurity incorporation induced by various growth interruptions and regrowth conditions on m-plane p-n junctions on free-standing GaN substrates. The following interruption types were investigated: (1) sample in the main MOCVD chamber for 10 min, (2) sample in the MOCVD load lock for 10 min, (3) sample outside the MOCVD for 10 min, and (4) sample outside the MOCVD for one week. Regrowth after the interruptions was performed on two different samples under n-GaN and p-GaN growth conditions, respectively. Secondary ion mass spectrometry (SIMS) analysis indicated interfacial silicon spikes with concentrations ranging from 5e16 cm-3 to 2e18 cm-3 for the n-GaN growth conditions and 2e16 cm-3 to 5e18 cm-3 for the p-GaN growth conditions. Oxygen spikes with concentrations ~1e17 cm-3 were observed at the regrowth interfaces. Carbon impurity levels did not spike at the regrowth interfaces under either set of growth conditions. We have correlated the effects of these interfacial impurities with the reverse leakage current and breakdown voltage of regrown m-plane p-n junctions.
The different rate-limiting processes underlying ignition and self-propagating reactions in Al/Pt multilayers are examined through experiments and analytical modeling. Freestanding, ∼1.6 μm-thick Al/Pt multilayers of varied stoichiometries and nanometer-scale layer thicknesses ignite at temperatures below the melting point of both reactants (and eutectics) demonstrating that initiation occurs via solid-state mixing. Equimolar multilayers exhibit the lowest ignition temperatures when comparing structures having a specific bilayer thickness. An activation energy of 76.6 kJ/mol at. associated with solid state mass transport is determined from the model analysis of ignition. High speed videography shows that equimolar Al/Pt multilayers undergo the most rapid self-sustained reactions with wavefront speeds as large as 73 m/s. Al- and Pt-rich multilayers react at reduced rates (as low as 0.3 m/s), consistent with reduced heat of reaction and lower adiabatic temperatures. An analytical model that accounts for key thermodynamic properties, preliminary mixing along interfaces, thermal transport, and mass diffusion is used to predict the wavefront speed dependencies on bilayer thickness. Good fits to experimental data provide estimates for activation energy (51 kJ/mol at.) associated with mass transport subject to high heating rates and thermal diffusion coefficient of premixed interfacial volumes (2.8 × 10-6 m2/s). Pt dissolution into molten Al is identified as a rate-limiting step underlying high temperature propagating reactions in Al/Pt multilayers.
Electric field-based frequency tuning of acoustic resonators at the material level provides an enabling technology for building complex tunable filters. Tunable acoustic resonators were fabricated in thin plates (h/λ ∼ 0.05) of X-cut lithium niobate (90°, 90°, ψ = 170°). Lithium niobate is known for its large electromechanical coupling (SH: K2 40%) and thus applicability for low-insertion loss and wideband filter applications. We demonstrate the effect of a DC bias to shift the resonant frequency by 0.4% by directly tuning the resonator material. The mechanism is based on the nonlinearities that exist in the piezoelectric properties of lithium niobate. Devices centered at 332 MHz achieved frequency tuning of 12 kHz/V through application of a DC bias.
The overall goal of this work was to improve the modeling of laboratory shock and vibration testing. Laboratory shock and vibration testing is used to qualify Nuclear Weapon components for the environment they will experience in the field. Standard practice is to use rigid test fixtures so that no spurious modes are introduced during laboratory testing. Rigid test fixtures may however in some cases change the dynamics of the component being tested, resulting in laboratory testing being more severe than what would occur in the field. This milestone investigated the use of topology optimization to create laboratory test fixtures that would better replicate the dynamics that components experience in field environments.
This memo describes the engineering technical and costing analysis support needed for identifying and evaluating technical and programmatic solutions for spent nuclear fuel (SNF) in dual-purpose canisters (DPCs), and the resources planned to provide that support. The Technical and Programmatic Solutions (T&PS) work scope is intended to identify and evaluate the range of feasible options available for DPC direct disposal, considering the range of DPC designs in the existing fleet and a range of generic geologic disposal concepts. It will also identify changes to the way DPCs are loaded, and/or additional hardware that could be installed in DPCs as they are loaded, to improve disposability (chiefly, post closure criticality control). These two thrusts are the focus of engineering support to the work package.
The overall goal of this work was to improve the modeling of laboratory shock and vibration testing. Laboratory shock and vibration testing is used to qualify Nuclear Weapon components for the environment they will experience in the field. Standard practice is to use rigid test fixtures so that no spurious modes are introduced during laboratory testing. Rigid test fixtures may however in some cases change the dynamics of the component being tested, resulting in laboratory testing being more severe than what would occur in the field.
Maximum power handling, spike leakage, and failure mechanisms have been characterized for limiters based on the thermally triggered metal-insulator transition of vanadium dioxide. These attributes are determined by properties of the metal-insulator material such as on/off resistance ratio, geometric properties that determine the film resistance and the currentcarrying capability of the device, and thermal properties such as heatsinking and thermal coupling. A limiter with greater than 10 GHz of bandwidth demonstrated 0.5 dB loss, 27 dBm threshold power, 8 Watts blocking power, and 0.4 mJ spike leakage at frequencies near 2 GHz. A separate limiter optimized for high power blocked over 60 Watts of incident power with leakage less than 25 dBm after triggering. The power handling demonstrates promise for these limiter devices, and device optimization presents opportunities for additional improvement in spike leakage, response speed, and reliability.
Failure mode analysis/identification of potential process improvements leading to the development of new engineered controls and facility improvements.
The DARMA many-task framework provides asynchronous communication and load balancing functionality. This functionality is embedded in standard, modern C++ through the use of the template wrapper classes similar to futures. DARMA previously functioned as a single, large repository. This simplified building and installation, but hindered agile development as individual components could not be easily updated or reused in other projects. DARMA components can now be developed independently and reused in other ECP projects. Through Spack and modern CMake, a complete DARMA package can be easily configured and installed with automatic dependency management for each of the configuration options.
Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two-terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three-terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. In this work, an all-solid-state electrochemical transistor made with Li ion–based solid dielectric and 2D α-phase molybdenum oxide (α-MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α-MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short- and long-term synaptic plasticity and bidirectional near-linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large-scale, energy-efficient neuromorphic computing networks.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's (DOE's), National Nuclear Security Administration. The National Nuclear Security Administration's Sandia Field Office administers the contract and oversees contractor operations at Sandia National Laboratories, New Mexico.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy (DOE), National Nuclear Security Administration. The National Nuclear Security Administration's Sandia Field Office administers the contract and oversees contractor operations at the Sandia National Laboratories Tonopah Test Range (SNL/TTR) in Nevada and the Sandia National Laboratories Kaua`i Test Facility (SNL/KTF) in Hawaii Activities at SNL/TTR are conducted in support of DOE weapons programs and have operated at the site since 1957. SNL/KTF has operated as a rocket preparation launching and tracking facility since 1961.
Future energy applications rely on our ability to tune liquid intermolecular interactions and achieve designer electrolytes with highly optimized properties. In this work, we demonstrate rational, combined experimental-computational design of a new carba-closo-dodecaborate-based salt with enhanced anodic stability for Mg energy storage applications. We first establish, through a careful examination using a range of solvents, the anodic oxidation of a parent anion, the carba-closo-dodecaborate anion at 4.6 V vs Mg0/2+ (2.0 vs Fc0/+), a value lower than that projected for this anion in organic solvent-based electrolytes and lower than weakly associating bis(trifluoromethylsulfonyl)imide and tetrafluoroborate anions. Solvents such as acetonitrile, 3-methylsulfolane, and 1,1,1,3,3,3-hexafluoroisopropanol are shown to enable the direct measurement of carba-closo-dodecaborate oxidation, where the resultant neutral radical drives passive film formation on the electrode. Second, we employ computational screening to evaluate the impact of functionalization of the parent anion on its stability and find that replacement of the carbon-vertex proton with a more electronegative fluorine or trifluoromethyl ligand increases the oxidative stability and decreases the contact-ion pair formation energy while maintaining reductive stability. This predicted expansion of the electrochemical window for fluorocarba-closo-dodecaborate is experimentally validated. Future work includes evaluation of the viability of these derivative anions as efficient and stable carriers for energy storage as a function of the ionic transport through the resulting surface films formed on candidate cathodes.
Understanding of aqueous dissolution of silicate glasses and minerals is of great importance to both Earth science and materials science. Silicate dissolution exhibits complex temporal evolution and spatial pattern formations. Recently, we showed how observed complexity could emerge from a simple self-organizational mechanism: dissolution of the silica framework in a material could be catalyzed by the cations released from the reaction itself. This mechanism enables us to systematically predict many key features of a silicate dissolution process including the occurrence of a sharp corrosion front (vs. a leached surface layer), oscillatory dissolution and multiple stages of the alteration process (e.g., an alteration rate resumption at a late stage of glass dissolution). Here, through a linear stability analysis, we show that this same mechanism can also lead to morphological instability of an alteration front, which, in combination with oscillatory dissolution, can potentially lead to a whole suite of patterning phenomena, as observed on archaeological glass samples, including wavy dissolution fronts, growth rings, incoherent bandings of alteration products, and corrosion pitting. Here, the result thus further demonstrates the importance of the proposed self-accelerating mechanism in silicate material degradation.
The impact on the morphology nanoceramic materials generated from group 4 metal alkoxides ([M(OR)4]) and the same precursors modified by 6,6′-(((2-hydroxyethyl)azanediyl)bis(methylene))bis(2,4-di-tert-butylphenol) (referred to as H3-AM-DBP2 (1)) was explored. The products isolated from the 1:1 stoichiometric reaction of a series of [M(OR)4] where M = Ti, Zr, or Hf; OR = OCH(CH3)2(OPri); OC(CH3)3(OBut); OCH2C(CH3)3(ONep) with H3-AM-DBP2 proved, by single crystal X-ray diffraction, to be [(ONep)Ti(k4(O,O′,O′′,N)-AM-DBP2)] (2), [(OR)M(μ(O)-k3(O′,O′′,N)-AM-DBP2)]2 [M = Zr: OR = OPri, 3·tol; OBut, 4·tol; ONep, 5·tol; M = Hf: OR = OBut, 6·tol; ONep, 7·tol]. The product from each system led to a tetradentate AM-DBP2 ligand and retention of a parent alkoxide ligand. For the monomeric Ti derivative (2), the metal was solved in a trigonal bipyramidal geometry, whereas for the Zr (3-5) and Hf (6, 7) derivatives a symmetric dinuclear complex was formed where the ethoxide moiety of the AM-DBP2 ligand bridges to the other metal center, generating an octahedral geometry. High quality density functional theory level gas-phase electronic structure calculations on compounds 2-7 using Gaussian 09 were used for meaningful time dependent density functional theory calculations in the interpretation of the UV-vis absorbance spectral data on 2-7. Nanoparticles generated from the solvothermal treatment of the ONep/AM-DBP2 modified compounds (2, 5, 7) in comparison to their parent [M(ONep)4] were larger and had improved regularity and dispersion of the final ceramic nanomaterials.
The effects of ultra-low glass transition temperature (Tg) phosphate glass (Pglass) on the thermal, morphological, rheological, mechanical, and crystallization properties of hybrid Pglass/poly(eththylene terephthalate)(PET) were investigated. Nano- and micro-scale distribution of the Pglass in the PET polymer matrix was observed. The polydispersed Pglass in the PET matrix functioned as a nucleation agent, resulting in increasing crystallization temperature. The Pglass in the PET matrix decreased the Tg, indicating a plasticizing effect of the Pglass in the hybrids that was confirmed by the significantly decreased complex viscosity of the PET matrix. In addition, with increasing temperature, a non-terminal behavior of the viscoelastic properties occurred due to the hybrid structural changes and improved miscibility of the hybrid components. In conclusion, the obtained solid-state variable temperature 31P and 1H NMR spectroscopy results showed strong Pglass concentration dependency of the interactions at the PET-Pglass interface.
International Conference on Optical MEMS and Nanophotonics
Sarma, Raktim S.; De Ceglia, Domenico; Nookala, Nishant; Vincenti, Maria A.; Campione, Salvatore; Wolf, Omri; Scalora, Michael; Belkin, Mikhail; Brener, Igal
We experimentally demonstrate a novel approach of using coupling between a leaky mode resonance and intersubband transitions in semiconductor quantum wells to realize a hybrid dielectric-semiconductor metasurface with high second-harmonic conversion efficiency and increased bandwidth.
The image below is a false-color rendering of a previously published cross-track stereo Synthetic Aperture Radar (SAR) height map. A gray-scale version of this image appeared in the following UUR document.
Some long-outstanding technical challenges exist that continue to be of hindrance to fully harnessing the unique investigative advantages of nuclear magnetic resonance (NMR) spectroscopy in the in situ investigation of rechargeable battery chemistry. For instance, the conducting materials and circuitry necessary for an operational battery always deteriorate the coil-based NMR sensitivity when placed inside the coil, and the shape mismatch between them leads to low sample filling factors and even higher detection limits. We report, herein, a novel and successful adaptation of stripline NMR detection that integrates seamlessly NMR detection with the construction of an electrochemical device in general, or a battery in particular, which leads to an in situ electrochemical NMR technique with much higher detection sensitivity, higher sample filling factor, and which is particularly suitable for mass-limited samples.
A patient in the United States has been diagnosed with Ebola. Fear and panic kicks in across the country, and hospitals are inundated with hundreds of people, some infected with the highly contagious disease and others not. Blood tests are needed for positive diagnoses, but the diagnostic labs are overwhelmed with blood samples to test, and staff are overworked and stressed. Infected people need to be quarantined and treated, but it's hard to find rooms to quarantine so many patients. Sick people who need triage and regular care for other emergencies are afraid to go to hospitals for fear of Ebola, which has a 50% fatality rate. And since hospitals are so overwhelmed, sick people often stay home, infecting heathy people around them; the U.S. is now in the grips a full-blown Ebola outbreak. Sandia's high-performance computers simulated such a nightmare scenario recently, and with good reason. An Ebola outbreak in the United States could be devastating if hospitals are not prepared. When an Ebola outbreak in West Africa became a global concern in 2014, health advisers were alarmed at the length of time it took to properly diagnose infected people. In rural areas in Liberia, for example, blood samples from ailing people would be sent to a laboratory for testing, but the closest lab was hundreds of miles away through difficult and sometimes impassable roads. In more urban areas, blood samples would be sent to nearby labs, but those labs were often already overburdened by the sheer volume of samples to test. Staff at some treatment centers were unaware that a lab a little farther away might have the capacity to take in more samples. Meanwhile, undiagnosed infected people were unknowingly spreading the disease to many others around them, worsening the outbreak. The U.S. Defense Threat Reduction Agency (DTRA) and Centers for Disease Control and Prevention (CDC) posed a serious question: how do we improve blood-sample transportation routes in Liberia to ensure that samples taken from ill people are tested as quickly as possible, ensuring a proper diagnosis and faster treatment? Sandia scientists, already experts in transportation modeling for nuclear materials, quickly swarmed on this problem. The Sandia Ebola response team immediately set out to collect data from the region using available maps and local information, and transformed the raw data to GIS maps. Then, applying Sandia transportation routing algorithms, the team identified the optimal routes to get blood samples to the best laboratory for testing, even if that lab was not geographically the closest. The models also showed the best possible locations for mobile diagnostic laboratories that would better support the very rural regions that were most affected by the Ebola outbreak.
Solar thermochemical hydrogen (STCH) production is one avenue for converting sunlight into hydrogen through concentrating solar thermal technology. STCH is a two-step redox process that begins with concentrated sunlight to thermally reduce a metal oxide around 1500 °C leaving it in an oxygen deficient form. Subsequent exposure of the reduced metal oxide to steam at lower temperature reoxidizes the material and produces hydrogen. The efficiency of this process is dependent on the metal oxide material thermodynamic properties and cycle operating conditions.
With the increased scale expected on future leadership-class systems, detailed information about the resource usage and performance of MPI message matching provides important insights into how to maintain application performance on next-generation systems. However, obtaining MPI message matching performance data is often not possible without significant effort. A common approach is to instrument an MPI implementation to collect relevant statistics. While this approach can provide important data, collecting matching data at runtime perturbs the application's execution, including its matching performance, and is highly dependent on the MPI library's matchlist implementation. In this paper, we introduce a trace-based simulation approach to obtain detailed MPI message matching performance data for MPI applications without perturbing their execution. Using a number of key parallel workloads and microbenchmarks, we demonstrate that this simulator approach can rapidly and accurately characterize matching behavior. Specifically, we use our simulator to collect several important statistics about the operation of the MPI posted and unexpected queues. For example, we present data about search lengths and the duration that messages spend in the queues waiting to be matched. Data gathered using this simulation-based approach have significant potential to aid hardware designers in determining resource allocation for MPI matching functions and provide application and middleware developers with insight into the scalability issues associated with MPI message matching.
This report serves as the executive summary to the comprehensive document that describes the software, control logic, and operational functions of the Pacific DC Intertie (PDCI) Oscillation Damping Controller. The purpose of the damping controller (DCON) is to mitigate inter-area oscillations in the Western Interconnection (WI) by active improvement of oscillatory mode damping using phasor measurement unit (PMU) feedback to modulate power flow in the PDCI. This report provides the high level descriptions, diagrams, and charts to receive a basic understanding of the organization and structure of the DCON software. This report complements the much longer comprehensive software document, and it does not include any proprietary information as the more comprehensive report does. The level of detail provided by the comprehensive report on the software documentation is intended to assist with the process needed to obtain compliance for North American Electric Reliability Corporation Critical Infrastructure Protection (NERC-CIP) as a Bulk energy system Cyber Asset (BCA) device. That report organizes, summarizes, and presents the charts, figures, and flow diagrams that detail the organization and function of the damping controller software. The PDCI Wide-Area Damping Controller is the result of a collaboration between Sandia National Laboratories (SNL), Bonneville Power Administration (BPA), Montana Tech University (MTU), and the Department of Energy (DOE).
The Vanguard program informally began in January 2017 with the submission of a white paper entitled "Sandia's Vision for a 2019 Arm Testbed" to NNSA headquarters. The program proceeded in earnest in May 2017 with an announcement by Doug Wade (Director, Office of Advanced Simulation and Computing and Institutional R&D at NNSA) that Sandia National Laboratories (Sandia) would host the first Advanced Architecture Prototype platform based on the Arm architecture. In August 2017, Sandia formed a Tri-lab team chartered to develop a robust HPC software stack for Astra to support the Vanguard program goal of demonstrating the viability of Arm in supporting ASC production computing workloads. This document describes the high-level Vanguard program goals, the Vanguard-Astra project acquisition plan and procurement up to contract placement, the initial software stack environment planned for the Vanguard-Astra platform (Astra), a description of how the communities of users will utilize the platform during the transition from the open network to the classified network, and initial performance results.
Structural dynamic testing is a common method for determining if the design of a component of a system will mechanically fail when deployed into its field environment. To satisfy the test's goal, the mechanical stresses must be replicated. Structural dynamic testing is commonly executed on a shaker table or a shock apparatus such as a drop table or a resonant plate. These apparatus impart a force or load on the component through a test fixture that connects the unit under test to the apparatus. Because the test fixture is directly connected to the unit under test, the fixture modifies the structural dynamics of the system, thus varying the locations and relative levels of stress on the unit under test. This may lead to a false positive or negative indication if the unit under test will fail in its field environment depending on the environment and the test fixture. This body of research utilizes topology optimization using the Plato software to design a test fixture that attaches to the unit under test that matches the dynamic impedance of the next level of assembly. The optimization's objective function is the difference between the field configuration and the laboratory configuration's frequency response functions. It was found that this objective function had many local minima and posed difficulties in converging to an acceptable solution. A case study is presented that uses this objective function and although the results are not perfect, they are quantifiably better than the current method of using a sufficiently stiff fixture.
The software team that develops Turbo FRMAC (TF) at Sandia National Labs has continued to look for technologies to add Cloud-enabling features to Turbo FRMAC. The Amazon AppStream service has now matured into a viable low-cost solution with quick turnaround potential to create a Cloud version of Turbo FRMAC. This service would allow both a Desktop and Cloud version of Turbo FRMAC to exist without duplicate efforts to support both instances. The only software needed to run is a modern Web Browser — no downloads and no installation necessary.
Sandia National Laboratories has tested and evaluated a digitizer, the SMART24B, manufactured by Geotech Instruments, LLC. These digitizers are used to record sensor output for seismic and infrasound monitoring applications. The purpose of the digitizer evaluation was to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The SMART24B is Geotech's datalogger intended for borehole deployment in their digitizer product line. The SMART24B is available with either 3 or 6 channels at 24 bit resolution. The digitizer is to be deployed in boreholes, therefore are a minimum number of connections required on the digitizer case as datalogger utilizes a distribution panel, mounted up-hole, serving to breakout power, GPS, serial communications and ethernet connections.
This document serves to guide a researcher through the process of running the Weather Research and Forecasting (WRF) model and incorporating observations into coarse resolution reanalysis products to model atmospheric conditions at high (50 m) resolution. This documentation is specific to WRF and the WRF Preprocessing System (WPS) version 3.8.1 and the Objective Analysis (OBSGRID) code released on April 8, 2016. Output from WRF serves as an input into the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS) which performs staggered-grid finite difference modeling of the acoustic velocity pressure system to produce Green's functions through these atmospheric models.
A series of experiments were performed with the objective of achieving an extreme thermal environment by creating a fire whirl in an enclosure in facilities at the Thermal Test Complex (TTC) at Sandia National Laboratories. The motivation for the experiments is based on results from previous experiments performed at Sandia in an igloo representing a mock weapon's storage facility. In that test series, a fire whirl developed within the igloo resulting in extremely high heat flux levels. This environment was created with a pool fire of 4.6-m in diameter and was not under controlled, repeatable conditions. The objective of the current tests is to have the ability to create this environment in a repeatable controlled environment at a smaller scale, namely with a pool fire not above 3-m diameter effectively, thereby allowing for repeatable, cost-effective testing. In FY15, six tests were conducted in the Crosswind Test Facility (XTF), using a 1.77 m square pan. In FY16, three tests were conducted in the Fire Laboratory for Accreditation of Modeling by Experiment (FLAME) using a 3-m diameter pan. Both of these test series utilized the same enclosure. In FY17, a single test was performed in XTF using a 2.7 m square pan using a modified enclosure which included a ceiling. All tests used Jet-A as the fuel. The wind speed and gap width of the enclosure were varied for the FY15 XTF tests and the gap width and effect of insulation on the enclosure walls were varied for the FY16 FLAME tests. Fuel regression rates, heat flux, and gas velocity measurements were obtained. The results from the FY15 and FY16 test series indicate that fuel regression rates and peak heat flux levels are a factor of two higher than non-fire whirl pool fires of equivalent diameter. The results from the FY17 test using an enclosure with a ceiling met the objective of the test series by achieving temperatures of nearly 1400°C and heat flux levels of 400 kW/m2.
Multivariate time-series datasets are intrinsic to the study of dynamic, naturalistic behavior, such as in the applications of finance and motion video analysis. Statistical models provide the ability to identify event patterns in these data under conditions of uncertainty, but researchers must be able to evaluate how well a model uses available information in a dataset for clustering decisions and for uncertainty information. The Hidden Markov Model (HMM) is an established method for clustering time-series data, where the hidden states of the HMM are the clusters. We develop novel methods for quantifying the uncertainty of the performance of and for visualizing the clustering performance and uncertainty of fitting a HMM to multivariate time-series data. We explain the usefulness of uncertainty quantification and visualization with evaluating the performance of clustering models, as well as how information exploitation of time-series datasets can be enhanced. We implement our methods to cluster patterns of scanpaths from raw eye tracking data.
Social network graph models are data structures representing entities (often people, corporations, or accounts) as "vertices" and their interactions as "edges" between pairs of vertices. These graphs are most often total-graph models — the overall structure of edges and vertices in a bidirectional or directional graph are described in global terms and the network is generated algorithmically. We are interested in "egocentrie or "agent-based" models of social networks where the behavior of the individual participants are described and the graph itself is an emergent phenomenon. Our hope is that such graph models will allow us to ultimately reason from observations back to estimated properties of the individuals and populations, and result in not only more accurate algorithms for link prediction and friend recommendation, but also a more intuitive understanding of human behavior in such systems than is revealed by previous approaches. This report documents our preliminary work in this area; we describe several past graph models, two egocentric models of our own design, and our thoughts about the future direction of this research.
We present single-sided 3D image reconstruction and neutron spectrum of non-nuclear material interrogated with a deuterium-tritium neutron generator. The results presented here are a proof-of-principle of an existing technique previously used for nuclear material, applied to non-nuclear material. While we do see excess signatures over background, they do not have the expected form and are currently un-identified.
Recent work done at the University of Florida (UF) revealed a tremendously enhanced germanium diffusion process along silicon/silicon dioxide interfaces during oxidizing anneals, allowing for the controlled formation of Si quantum wires. This project seeks to further explore this unusual germanium behavior during oxidation for the purpose of forming unique and useful nano and quantum structures. Specifically, we propose here to demonstrate for the first time that this phenomenon can be extended to realize OD Si nanostructures through the oxidation of axially heterostructured vertical Si/SiGe pillars. Such structures could be of great interest for applications in integrated optoelectronics, beyond Moore's Law computing, and quantum computing.
The description and notes describe and scope the activities performed under this PHS. All hazards have been identified. Questions are answered correctly and, as necessary, rationale or clarification is provided. All hazards in the HA have been analyzed, including the identification of controls for each hazard. l have reviewed this PHS and concur that its contents are accurate and complete.
The description and notes describe and scope the activities performed under this PHS. All hazards have been identified. Questions are answered correctly and, as necessary, rationale or clarification is provided. All hazards in the HA have been analyzed, including the identification of controls for each hazard. l have performed the above reviews and concur that those items are complete and accurate.
Aerosol jet printing (AJP) is a promising microscale additive manufacturing technology for emerging applications in printed and flexible electronics. However, the more widespread adoption of this emerging technique is hindered by a limited fundamental understanding of the process. This work focuses on a critical and underappreciated aspect of the process, the interaction between drying induced by the sheath gas and impaction. Combining focused experiments with support from numerical modeling, it is shown that these effects have a dramatic impact on key outputs of the process, including deposition rate, resolution, and morphology. These effects can amplify minor changes in ink composition or atomization yield, increasing process sensitivity and drift. Moreover, these effects can confound strategies for in-line process monitoring and control based on empirical observables. Strategies to directly manipulate this annular drying phenomenon are presented, providing a viable tool to tailor and study the process. This work clarifies coupled effects of printer design, ink formulation, and print parameters, establishing a more robust theoretical framework for understanding the AJP process and advancing the maturity of this promising technology.
Seismic signals are composed of the seismic waves (phases) that reach a sensor, similar to the way speech signals are composed of phonemes that reach a listener's ear. Large/small seismic events near/far from a sensor are similar to loud/quiet speakers with high/low-pitched voices. We leverage ideas from speech recognition for the classification of seismic phases at a seismic sensor. Seismic Phase ID is challenging due to the varying paths and distances an event takes to reach a sensor, but there is consistent structure of the makeup (e.g. ordering) of the different phases arriving at the sensor.
Current loss in magnetically insulated transmission lines (MITLs) was investigated using data from experiments conducted on Z and Mykonos. Data from experiments conducted on Z were used to optimize an ion diode current loss model that has been implemented into the transmission line circuit model of Z. Details on the current loss model and comparisons to data from Z experiments have been previously published in a peer-reviewed journal [Hutsel, et al., Phys. Rev. Accel. Beams 21, 030401]. Dedicated power flow experiments conducted on Mykonos investigated current loss in a millimeter-scale anode-cathode gap MITL operated at lineal current densities greater than 410 kA/cm and with electric field stresses in excess of 240 kV/cm where it is expected that both anode and cathode plasmas are formed. The experiment MITLs were exposed to varying vacuum conditions; including vacuum pressure at shot time, time under vacuum, and vacuum storage protocols. The results indicate that the vacuum conditions have an effect on current loss in high lineal current density MITLs.
GaN-on-Si combines the wide bandgap advantages of GaN with the cost and scaling advantages of Si. Sputtered A1N is an attractive nucleation layer material because it reduces Al diffusion into the Si and eliminates a time-intensive preconditioning step in the GaN growth process, but is limited by the poor film quality of PVD A1N films deposited on Si substrates. Sputtering also offers a large degree of control over A1N film properties, including control of the intrinsic stress using substrate biasing. Doping the A1N films with Sc improves the lattice match to A1GaN and GaN films by expanding the a-axis and c-axis lattice parameters. A1N and A10.88Sc0.12N films have been grown on silicon, metal, and sapphire substrates and characterized for properties such as stress, grain size, roughness, and film orientation for use as nucleation layers for MOCVD GaN growth.
Traditional Monte Carlo particle transport codes are expected to run inefficiently on next-generation architectures as they are memory-intensive and highly divergent. Since electrons and photons also behave differently, the future for coupled electron-photon radiation transport looks even worse. This project describes preliminary efforts to improve the performance of Monte Carlo particle transport codes when using accelerators like the graphics processing unit (GPU). Two key issues are addressed: how to handle memory-intensive tallies, and how to reduce divergence. Tallying on the GPU can be done efficiently by post-processing particle data, or by using a feature called warp shuffle for summing scores in parallel during the simulation. Reducing divergence is possible by using an event-based algorithm for particle tracking instead of the traditional history-based one. Although performance tests presented in this work show that the history-based algorithm generally outperformed the event-based one for simple problems, this outcome will likely change as the complexity of the code increases.
Stress corrosion cracks (SCC) represent a major concern for the structural integrity of engineered metal structures. In hazardous or restricted-access environments, remote detection of corrosion or SCC frequently relies on visual methods; however, with standard VT-1 visual inspection techniques, probabilities of SCC detection are low. Here, we develop and evaluate an improved optical sensor for SCC in restricted access-environments by combining a robotically controlled camera/fiber-optic based probe with software-based super-resolution imaging (SRI) techniques to increase image quality and detection of SCC. SRI techniques combine multiple images taken at different viewing angles, locations, or rotations, to produce a single higher- resolution composite image. We have created and tested an imaging system and algorithms for combining optimized, controlled camera movements and super- resolution imaging, improving SCC detection probabilities, and potentially revolutionizing techniques for remote visual inspections of any type.
This report explores the potential for reducing the fields and the quality factor within a system cavity by introducing microwave absorbing materials. Although the concept of introducing absorbing (lossy) materials within a cavity to drive the interior field levels down is well known, increasing the loading into a complex weapon cavity specifically for improved electromagnetic performance has not, in general, been considered, and this will be the subject of this work. We compare full-wave simulations to experimental results, demonstrating the applicability of the proposed method.
Current designs for spent fuel transportation casks cannot ensure a cask's integrity during shipment, nor is there any verifiable means of maintaining continuity of knowledge (CoK) on a cask's contents. Spent fuel destined for encapsulation plants or geological repositories requires additional containment and surveillance (C/S) measures during shipment. Following final safeguards accountancy measurements on spent fuel assemblies, the shipment of verified assemblies will require unprecedented reliance on maintaining CoK on the fuel inside transport casks. Such increased reliance is due to the lack of reverification of spent fuel following encapsulation into disposal canisters and by meeting the requirement of dual C/S measures during such fuel shipments according to recommendations made by the Application of Safeguards to Geological Repositories (ASTOR) International Atomic Energy Agency (IAEA) expert group. By designing spent fuel transportation casks with effective seals integrated into their design, CoK can be more effectively maintained than by ad hoc C/S measures because seal integration ensures that a cask has not been tampered with. Externally applied seals might not be able to provide such assurance for currently designed spent fuel transportation casks, although some combination of seals, detectors, and/or a technology that can verify canister integrity might provide this assurance. This paper examines the design criteria for integrating safeguards seals into transportation casks and provides recommendations for near-term applications.
The rise of low-power neuromorphic hardware has the potential to change high-performance computing; however much of the focus on brain-inspired hardware has been on machine learning applications. A low-power solution for solving partial differential equations could radically change how we approach large-scale computing in the future. The random walk is a fundamental stochastic process that underlies many numerical tasks in scientific computing applications. We consider here two neural algorithms that can be used to efficiently implement random walks on spiking neuromorphic hardware. The first method tracks the positions of individual walkers independently by using a modular code inspired by grid cells in the brain. The second method tracks the densities of random walkers at each spatial location directly. We present the scaling complexity of each of these methods and illustrate their ability to model random walkers under different probabilistic conditions. Finally, we present implementations of these algorithms on neuromorphic hardware.
This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices. The treatment allows one to assume the cross sections are distributed with a multivariate normal distribution, lognormal distribution, or truncated normal distribution.