Publications

Results 1–25 of 326

Search results

Jump to search filters

Seeding the Electrothermal Instability through a Three-Dimensional, Nonlinear Perturbation

Physical Review Letters

Awe, Thomas J.; Cochrane, Kyle C.; Peterson, Kyle J.; Yates, Kevin C.; Hutchinson, T.M.; Hatch, Maren W.; Bauer, B.S.; Tomlinson, K.; Sinars, Daniel S.

Electrothermal instability plays an important role in applications of current-driven metal, creating striations (which seed the magneto-Rayleigh-Taylor instability) and filaments (which provide a more rapid path to plasma formation). However, the initial formation of both structures is not well understood. Simulations show for the first time how a commonly occurring isolated defect transforms into the larger striation and filament, through a feedback loop connecting current and electrical conductivity. Simulations have been experimentally validated using defect-driven self-emission patterns.

More Details

Three-dimensional feedback processes in current-driven metal

Physical Review. E

Awe, Thomas J.; Cochrane, Kyle C.; Peterson, Kyle J.; Yates, Kevin C.; Hatch, Maren W.; Tomlinson, Kurt T.; Sinars, Daniel S.; Hutchinson, Trevor M.; Bauer, Bruno S.

Using three-dimensional (3D) magnetohydrodynamic simulations, we study how a pit on a metal surface evolves when driven by intense electrical current density j. Redistribution of j around the pit initiates a feedback loop: j both reacts to and alters the electrical conductivity σ, through Joule heating and hydrodynamic expansion, so that j and σ are constantly in flux. Thus, the pit transforms into larger striation and filament structures predicted by the electrothermal instability theory. Both structures are important in applications of current-driven metal: Here, the striation constitutes a density perturbation that can seed the magneto-Rayleigh-Taylor instability, while the filament provides a more rapid path to plasma formation, through 3D j redistribution. Simulations predict distinctive self-emission patterns, thus allowing for experimental observation and comparison.

More Details

Harmonic Generation and Inverse Cascade in the z-Pinch Driven, Preseeded Multimode, Magneto-Rayleigh-Taylor Instability

Physical Review Letters

Ruiz, Daniel E.; Yager-Elorriaga, David A.; Peterson, Kyle J.; Sinars, Daniel S.; Weis, Matthew R.; Schroen, D.G.; Tomlinson, K.; Fein, Jeffrey R.; Beckwith, Kristian B.

The magneto-Rayleigh-Taylor instability (MRTI) plays an essential role in astrophysical systems and in magneto-inertial fusion, where it is known to be an important degradation mechanism of confinement and target performance. In this Letter, we show for the first time experimental evidence of mode mixing and the onset of an inverse-cascade process resulting from the nonlinear coupling of two discrete preseeded axial modes (400- and 550-μm wavelengths) on an Al liner that is magnetically imploded using the 20-MA, 100-ns rise-time Z Machine at Sandia National Laboratories. Four radiographs captured the temporal evolution of the MRTI. We introduce a novel unfold technique to analyze the experimental radiographs and compare the results to simulations and to a weakly nonlinear model. We find good quantitative agreement with simulations using the radiation magnetohydrodynamics code hydra. Spectral analysis of the MRTI time evolution obtained from the simulations shows evidence of harmonic generation, mode coupling, and the onset of an inverse-cascade process. The experiments provide a benchmark for future work on the MRTI and motivate the development of new analytical theories to better understand this instability.

More Details

Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation

Physics of Plasmas

Knapp, Patrick K.; Glinsky, Michael E.; Schaeuble, Marc-Andre S.; Jennings, Christopher A.; Evans, Matthew; Gunning, James; Awe, Thomas J.; Chandler, Gordon A.; Geissel, Matthias G.; Gomez, Matthew R.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Humane, Shailja; Klein, Brandon T.; Mangan, Michael M.; Nagayama, Taisuke N.; Porwitzky, Andrew J.; Ruiz, Daniel E.; Schmit, Paul F.; Slutz, Stephen A.; Smith, Ian C.; Weis, Matthew R.; Yager-Elorriaga, David A.; Ampleford, David A.; Beckwith, Kristian B.; Mattsson, Thomas M.; Peterson, Kyle J.; Sinars, Daniel S.

We present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, Patrick K.; Schmit, Paul S.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael M.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn L.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

IMPROVED PERFORMANCE OF MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS WITH HIGH-ENERGY LOW-MIX LASER PREHEAT CONFIGURATIONS

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Weis, Matthew R.; Jennings, Christopher A.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, Kelly; Hansen, Stephanie B.; Hanson, Joseph C.; Harding, Eric H.; Knapp, Patrick K.; Mangan, Michael M.; Perea, L.; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos; Schwarz, Jens S.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, K.; Paguio, Reny; Smith, Gary L.; York, Adam Y.

Abstract not provided.

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David A.; Weis, Matthew R.; Myers, Clayton E.; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael M.; Knapp, Patrick K.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary W.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Laros, James H.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul S.; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas M.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

Developing inductively driven diagnostic X-ray sources to enable transformative radiography and diffraction capabilities on Z

Myers, Clayton E.; Gomez, Matthew R.; Lamppa, Derek C.; Webb, Timothy J.; Yager-Elorriaga, David A.; Hutsel, Brian T.; Jennings, Christopher A.; Knapp, Patrick K.; Kossow, Michael R.; Lucero, Larry M.; Obregon, Robert J.; Steiner, Adam M.; Sinars, Daniel S.

Penetrating X-rays are one of the most effective tools for diagnosing high energy density experiments, whether through radiographic imaging or X-ray diffraction. To expand the X-ray diagnostic capabilities at the 26-MA Z Pulsed Power Facility, we have developed a new diagnostic X-ray source called the inductively driven X-pinch (IDXP). This X-ray source is powered by a miniature transmission line that is inductively coupled to fringe magnetic fields in the final power feed. The transmission line redirects a small amount of Zs magnetic energy into a secondary cavity where 150+ kA of current is delivered to a hybrid X-pinch. In this report, we describe the multi-stage development of the IDXP concept through experiments both on Z and in a surrogate setup on the 1 MA Mykonos facility. Initial short-circuit experiments to verify power ow on Z are followed by short-circuit and X-ray source development experiments on Mykonos. The creation of a radiography-quality X-pinch hot spot is verified through a combination of X-ray diode traces, laser shadowgraphy, and source radiography. The success of the IDXP experiments on Mykonos has resulted in the design and fabrication of an IDXP for an upcoming Z experiment that will be the first-ever X-pinch fielded on Z. We have also pursued the development of two additional technologies. First, the extended convolute post (XCP) has been developed as an alternate method for powering diagnostic X-pinches on Z. This concept, which directly couples the current owing in one of the twelve Z convolute posts to an X-pinch, greatly increases the amount of available current relative to an IDXP (900 kA versus 150 kA). Initial short-circuit XCP experiments have demonstrated the efficacy of power ow in this geometry. The second technology pursued here is the inductively driven transmission line (IDTL) current monitor. These low-current IDTLs seek to measure the current in the final power feed with high fidelity. After three generations of development, IDTL current monitors frequently return cleaner current measurements than the standard B-dot sensors that are fielded on Z. This is especially true on high-inductance experiments where the harshest conditions are created in the nal power feed.

More Details
Results 1–25 of 326
Results 1–25 of 326