Publications

Results 1–25 of 179
Skip to search filters

Impact of modifier-rich coatings on the ionic transport of glasses [Poster]

Clem, Paul G.; Nieves, Cesar A.; Yuan, Mengxue Y.; Ogrinc, Andrew L.; Furman, Eugene F.; Kim, Seong H.; Lanagan , Michael T.

Ionic conduction in silicate glasses is mainly influenced by the nature, concentration, and mobility of the network-modifying (NWM) cations. The electrical conduction in SLS is dominated by the ionic migration of sodium moving from the anode to the cathode. An activation energy for this conduction process was calculated to be 0.82eV and in good agreement with values previously reported. The conduction process associated to the leakage current and relaxation peak in TSDC for HPFS is attributed to conduction between nonbridging oxygen hole centers (NBOHC). It is suggested that ≡Si-OH = ≡Si-O- + H0 under thermo-electric poling, promoting hole or proton injection from the anode and responsible for the 1.5eV relaxation peak. No previous TSDC data have been found to corroborate this mechanism. The higher activation energy and lower current intensity for the coated HPFS might be attributed to a lower concentration of NBOHC after heat treatment (Si-OH + OH-Si = SiO-Si + H2O). This could explain the TSDC signal around room temperature for the coated HPFS. Another possible explanation could be a redox reaction at the anode region dominating the current response.

More Details

Atomic step disorder on polycrystalline surfaces leads to spatially inhomogeneous work functions

Journal of Vacuum Science and Technology A

Bussmann, Ezra B.; smith, sean w.; Scrymgeour, David S.; Brumbach, Michael T.; Lu, Ping L.; Dickens, Sara D.; Michael, Joseph R.; Ohta, Taisuke O.; Hjalmarson, Harold P.; Schultz, Peter A.; Clem, Paul G.; Hopkins, Matthew M.; Moore, Christopher M.

Structural disorder causes materials’ surface electronic properties, e.g., work function ([Formula: see text]), to vary spatially, yet it is challenging to prove exact causal relationships to underlying ensemble disorder, e.g., roughness or granularity. For polycrystalline Pt, nanoscale resolution photoemission threshold mapping reveals a spatially varying [Formula: see text] eV over a distribution of (111) vicinal grain surfaces prepared by sputter deposition and annealing. With regard to field emission and related phenomena, e.g., vacuum arc initiation, a salient feature of the [Formula: see text] distribution is that it is skewed with a long tail to values down to 5.4 eV, i.e., far below the mean, which is exponentially impactful to field emission via the Fowler–Nordheim relation. We show that the [Formula: see text] spatial variation and distribution can be explained by ensemble variations of granular tilts and surface slopes via a Smoluchowski smoothing model wherein local [Formula: see text] variations result from spatially varying densities of electric dipole moments, intrinsic to atomic steps, that locally modify [Formula: see text]. Atomic step-terrace structure is confirmed with scanning tunneling microscopy (STM) at several locations on our surfaces, and prior works showed STM evidence for atomic step dipoles at various metal surfaces. From our model, we find an atomic step edge dipole [Formula: see text] D/edge atom, which is comparable to values reported in studies that utilized other methods and materials. Our results elucidate a connection between macroscopic [Formula: see text] and the nanostructure that may contribute to the spread of reported [Formula: see text] for Pt and other surfaces and may be useful toward more complete descriptions of polycrystalline metals in the models of field emission and other related vacuum electronics phenomena, e.g., arc initiation.

More Details

Report on High Energy Arcing Fault Experiments: Experimental Results from Open Box Enclosures

LaFleur, Chris B.; Glover, Austin M.; Clem, Paul G.; Winters, Caroline W.; Taylor, Gabriel T.; Salley, Mark H.; Putorti, Anthony P.; Cruz-Cabrera, A.A.; Demosthenous, Byron D.; MARTINEZ, RAYMOND H.

This report documents an experimental program designed to investigate High Energy Arcing Fault (HEAF) phenomena. The experiments focus on providing data to better characterize the arc to improve the prediction of arc energy emitted during a HEAF event. An open box experiment allow for direct observation of the arc, which allows diagnostic instrumentation to record the phenomenological data needed for better characterization of the arc energy source term. The data collected supports characterization of the arc and arc jet, enclosure breach, material loss, and electrical properties. These results will be used to better characterizing the hazard for improvements in fire probabilistic risk assessment (PRA) realism. The experiments were performed at KEMA Labs located in Chalfont, Pennsylvania. The experimental design, setup, and execution were completed by staff from the NRC, the National Institute of Standards and Technology (NIST), Sandia National Laboratories (SNL) and KEMA Labs. In addition, representatives from the Electric Power Research Institute (EPRI) observed some of the experimental setup and execution. The HEAF experiments were performed between August 22, 2020 and September 18, 2020 on near-identical 51 cm (20 in) cube metal boxes suspended from a Unistrut support structure. The three-phase arcing fault was initiated at the ends of the conductors oriented vertically and located at the center of the box. Either aluminum or copper conductors were used for the conductors. The low-voltage experiments used 1 000 volts AC, while the medium-voltage experiments used 6 900 volts AC consistent with other recently completed experiments. Durations of the experiment ranged from 1 s to 5 s with fault currents ranging from 1 kA to 30 kA. Real-time electrical operating conditions, including voltage, current and frequency, were measured during the experiments. Heat fluxes and incident energies were measured with plate thermometers, radiometers, and slug calorimeters at various locations around the electrical enclosures. The experiments were documented with normal and high-speed videography, infrared imaging and photography.

More Details

High-fidelity modeling of breakdown in helium: Initiation processes and secondary electron emission

Journal of Physics D: Applied Physics

Lietz, Amanda M.; Barnat, Edward V.; Nail, George R.; Roberds, Nicholas R.; Fierro, Andrew S.; Yee, Benjamin T.; Moore, Christopher H.; Clem, Paul G.; Hopkins, Matthew M.

Understanding the role of physical processes contributing to breakdown is critical for many applications in which breakdown is undesirable, such as capacitors, and applications in which controlled breakdown is intended, such as plasma medicine, lightning protection, and materials processing. The electron emission from the cathode is a critical source of electrons which then undergo impact ionization to produce electrical breakdown. In this study, the role of secondary electron yields due to photons (γ ph) and ions (γ i) in direct current breakdown is investigated using a particle-in-cell direct simulation Monte Carlo model. The plasma studied is a one-dimensional discharge in 50 Torr of pure helium with a platinum cathode, gap size of 1.15 cm, and voltages of 1.2-1.8 kV. The current traces are compared with experimental measurements. Larger values of γ ph generally result in a faster breakdown, while larger values of γ i result in a larger maximum current. The 58.4 nm photons emitted from He(21P) are the primary source of electrons at the cathode before the cathode fall is developed. Of the values of γ ph and γ i investigated, those which provide the best agreement with the experimental current measurements are γ ph = 0.005 and γ i = 0.01. These values are significantly lower than those in the literature for pristine platinum or for a graphitic carbon film which we speculate may cover the platinum. This difference is in part due to the limitations of a one-dimensional model but may also indicate surface conditions and exposure to a plasma can have a significant effect on the secondary electron yields. The effects of applied voltage and the current produced by a UV diode which was used to initiate the discharge, are also discussed.

More Details

Study of vacuum ultraviolet emission in helium and helium/nitrogen mixtures

Journal of Applied Physics

Fierro, Andrew S.; Lehr, Jane; Yee, Benjamin C.; Barnat, Edward V.; Moore, Chris; Hopkins, Matthew M.; Clem, Paul G.

Helium is frequently used as a working medium for the generation of plasmas and is capable of energetic photon emissions. These energetic photon emissions are often attributed to the formation of helium excimer and subsequent photon emission. When the plasma device is exposed to another gas, such as nitrogen, this energetic photon emission can cause photoionization and further ionization wave penetration into the additional gas. Often ignored are the helium resonance emissions that are assumed to be radiation trapped and therefore not pertinent to photoionization. Here, experimental evidence for the presence of helium atomic emission in a pulsed discharge at ten's of Torr is shown. Simulations of a discharge in similar conditions agree with the experimental measurements. In this context, the role of atomic and molecular helium light emission on photoionization of molecular nitrogen in an ionization wave is studied using a kinetic modeling approach that accounts for radiation dynamics in a developing low-temperature plasma. Three different mixtures of helium at a total pressure of 250 Torr are studied in simulation. Photoionization of the nitrogen molecule by vacuum ultraviolet helium emission is used as the only seed source ahead of the ionization front. It is found that even though radiation trapped, the atomic helium emission lines are the significant source of photoionization of nitrogen. The significant effect of radiation trapped photon emission on ionization wave dynamics demonstrates the need to consider these radiation dynamics in plasma reactors where self-absorbed radiation is ignored.

More Details

Electrical conduction and polarization of silica-based capacitors under electro-thermal poling

Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP

Nieves-Sanabria, Cesar N.; Wilke, Rudeger H.T.; Bishop, Sean R.; Lanagan, Michael T.; Clem, Paul G.

Electrical conduction in silica-based capacitors under a combined effect of intermediate electric field and temperature (2.5 - 10 kV/mm, 50-300°C) is dominated by localized motion of high mobility ions such as sodium. Thermally stimulated polarization and depolarization current (TSPC/TSDC) characterization was carried out on poled fused silica and AF32 glass samples. Two relaxation mechanisms were found during the depolarization step and an anomalous response for the second TSDC peak was observed. Absorption current measurements were performed on the glass samples and a time-dependent response was observed when subjected to different electro-thermal conditions. It was found that at low temperature (T = 175 °C) and short times, the current follows a linear behavior (I α V) while at high temperature (T = 250 °C), the current follows V0.5. TSPC/TSDC and absorption current measurements results led to the conclusion that (1) Poole-Frenkel dominates conduction at high temperatures and at longer times and that (2) ionic blockage and/or H+/H3O+ injection are responsible for the observed anomalous current response.

More Details

Encapsulant Void Breakdown Voltage Modeling & Experiments

Moore, Christopher H.; Clem, Paul G.; Biedermann, Laura B.; Miller, William K.; Stavig, Mark E.; Turner, Christian T.

For high voltage electrical devices, prevention of high voltage breakdown is critical for device function. Use of polymeric encapsulation such as epoxies is common, but these may include air bubbles or other voids of varying size. The present work aimed to model and experimentally determine the size dependence of breakdown voltage for voids in an epoxy matrix, as a step toward establishing size criteria for void screening. Effects were investigated experimentally for both one-dimensional metal/epoxy/air/epoxy/metal gap sizes from 50 μm to 10 mm, as well as spherical voids of 250 μm, 500 μm, 1 mm and 2 mm sizes. These experimental results were compared to modified Paschen curve and particle-in-cell discharge models; minimum breakdown voltages of 6 - 8.5 kV appeared to be predicted by 1D models and experiments, with minimum breakdown voltage for void sizes of 0.2 - 1 mm. In a limited set of 3D experiments on 250 μm, 500 μm, 1 mm and 2 mm voids within epoxy, the minimum breakdown voltages observed were 18.5 - 20 kV, for 500 μm void sizes. These experiments and models are aimed at providing initial size and voltage criteria for tolerable void sizes and expected discharge voltages to support design of encapsulated high voltage components.

More Details

Electromagnetic Pulse – Resilient Electric Grid for National Security: Research Program Executive Summary

Guttromson, Ross G.; Lawton, Craig R.; Halligan, Matthew H.; Huber, Dale L.; Flicker, Jack D.; Hoffman, Matthew J.; Bowman, Tyler B.; Campione, Salvatore; Clem, Paul G.; Fiero, Andrew F.; Hansen, Clifford H.; Llanes, Rodrigo E.; Pfeiffer, Robert A.; Pierre, Brian J.; Martin, Luis S.; Sanabria, David E.; Schiek, Richard S.; Slobodyan, Oleksiy S.; Warne, Larry K.

Sandia National Laboratories sponsored a three-year internally funded Laboratory Directed Research and Development (LDRD) effort to investigate the vulnerabilities and mitigations of a high-altitude electromagnetic pulse (HEMP) on the electric power grid. The research was focused on understanding the vulnerabilities and potential mitigations for components and systems at the high voltage transmission level. Results from the research included a broad array of subtopics, covered in twenty-three reports and papers, and which are highlighted in this executive summary report. These subtopics include high altitude electromagnetic pulse (HEMP) characterization, HEMP coupling analysis, system-wide effects, and mitigating technologies.

More Details
Results 1–25 of 179
Results 1–25 of 179