Publications

Results 1–25 of 105
Skip to search filters

Input Signal for Synthetic Inertia: Estimated ROCOF Versus Remote Machine Acceleration

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Wilches-Bernal, Felipe; Wold, Josh; Balliet, W.H.

This paper studies the differences in a synthetic inertia controller of using two different feedback measurements: (i) an estimate of the rate of change of frequency from local voltage measurements, and (ii) a remote machine acceleration from a generator nearby to the actuator. The device that provides the synthetic inertia action is a converter interfaced generator (CIG). The paper carries out analysis in the frequency domain, using Bode plots, to show that synthetic inertia control using frequency estimates is more prone to instabilities than for the case where a machine speed is used. The paper then proposes a controller (or a filter) to mitigate these effects. In addition, the paper shows the effects that a delay of the machine speed signal of the nearby generator has on the synthetic inertia control of the system and how a controller is also needed in this case. Finally, the paper shows the difference in performance of a synthetic inertia controller when using these different measurement signals with simulations in time domain a electromagnetic transient program platform.

More Details

Control of High Voltage DC Links between Interconnections for Small Signal Stability

2020 52nd North American Power Symposium, NAPS 2020

Pierre, Brian J.; Wilches-Bernal, Felipe; Schoenwald, David A.

More Details

Modeling inverters with grid support functions for power system dynamics studies

2021 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2021

Guruwacharya, Nischal; Bhujel, Niranjan; Hansen, Timothy M.; Suryanarayanan, Siddharth; Tonkoski, Reinaldo; Tamrakar, Ujjwol; Wilches-Bernal, Felipe

A significant amount of converter-based generation, such as wind and photovoltaic, is being integrated into thebulk electric power grid to fulfill the future electric demand. Such converter-based distributed energy resources (DERs) will be providing multiple grid support functions (GSFs) to supportvoltage and frequency control of the power system. In thispaper, we present the development of a MA /Simulink-based simulation model to study power system dynamics whenDERs are equipped with GSFs. The simulation model of aninverter with GSFs is validated through comparisons against thecharacteristic curves for each function of the IEEE 1547-2018standard. The normalized root-mean-square-error (NRMSE) wascalculated to be less than 2%. The developed model is then used ina sample power systems dynamics study under various operatingconditions. Results show the exnected resnonse of inverfers withGSFs, properly supporting the grid voltage and frequency andmaintaining the value within an acceptable range.

More Details

A Dynamic Mode Decomposition Scheme to Analyze Power Quality Events

IEEE Access

Wilches-Bernal, Felipe; Reno, Matthew J.; Hernandez Alvidrez, Javier H.

This paper presents a new method for detecting power quality disturbances, such as faults. The method is based on the dynamic mode decomposition (DMD)-a data-driven method to estimate linear dynamics whose eigenvalues and eigenvectors approximate those of the Koopman operator. The proposed method uses the real part of the main eigenvalue estimated by the DMD as the key indicator that a power quality event has occurred. The paper shows how the proposed method can be used to detect events using current and voltage signals to distinguish different faults. Because the proposed method is window-based, the effect that the window size has on the performance of the approach is analyzed. In addition, a study on the effect that noise has on the proposed approach is presented.

More Details

A Survey of Traveling Wave Protection Schemes in Electric Power Systems

IEEE Access

Wilches-Bernal, Felipe; Bidram, Ali; Reno, Matthew J.; Hernandez Alvidrez, Javier H.; Barba, Pedro; Reimer, Benjamin; Montoya, Rudy; Carr, Christopher C.; Lavrova, Olga A.

As a result of the increase in penetration of inverter-based generation such as wind and solar, the dynamics of the grid are being modified. These modifications may threaten the stability of the power system since the dynamics of these devices are completely different from those of rotating generators. Protection schemes need to evolve with the changes in the grid to successfully deliver their objectives of maintaining safe and reliable grid operations. This paper explores the theory of traveling waves and how they can be used to enable fast protection mechanisms. It surveys a list of signal processing methods to extract information on power system signals following a disturbance. The paper also presents a literature review of traveling wave-based protection methods at the transmission and distribution levels of the grid and for AC and DC configurations. The paper then discusses simulations tools to help design and implement protection schemes. A discussion of the anticipated evolution of protection mechanisms with the challenges facing the grid is also presented.

More Details

Configurable Microgrid Modelling with Multiple Distributed Energy Resources for Dynamic System Analysis

IEEE Power and Energy Society General Meeting

Darbali-Zamora, Rachid; Wilches-Bernal, Felipe; Naughton, Brian T.

As renewable energy sources are becoming more dominant in electric grids, particularly in micro grids, new approaches for designing, operating, and controlling these systems are required. The integration of renewable energy devices such as photovoltaics and wind turbines require system design considerations to mitigate potential power quality issues caused by highly variable generation. Power system simulations play an important role in understanding stability and performance of electrical power systems. This paper discusses the modeling of the Global Laboratory for Energy Asset Management and Manufacturing (GLEAMM) micro grid integrated with the Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) test site, providing a dynamic simulation model for power flow and transient stability analysis. A description of the system as well as the dynamic models is presented.

More Details

Model Reduction of Wind Turbine Generator Models for Control Performance Evaluation

Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference

Wilches-Bernal, Felipe; Lackner, Christoph; Chow, Joe H.

Power system operations are fundamentally changed by the growing installation of wind generation systems. The undispatchable nature of wind turbine generators (WTGs) causes the operating conditions of power systems to be more volatile. At the same time, the converter-based interface of WTGs are capable, and are increasingly expected to, provide voltage and frequency regulation capabilities. Monitoring of power systems becomes critical under these anticipated conditions and high resolution data, such as synchrophasors, are crucial for this task. This paper presents an approximate low-order model of WTGs that can be readily estimated from available synchrophasor measurements. The identification of the parameters of the model can be used to approximate the control performance of WTGs and their contributions to frequency and voltage regulation.

More Details

Opportunities and Trends for Energy Storage plus Solar in CAISO: 2014-2018

IEEE Power and Energy Society General Meeting

Byrne, Raymond H.; Nguyen, Tu A.; Headley, Alexander H.; Wilches-Bernal, Felipe; Concepcion, Ricky J.; Trevizan, Rodrigo D.

More Details

Models and analysis of fuel switching generation impacts on power system resilience

IEEE Power and Energy Society General Meeting

Wilches-Bernal, Felipe; Knueven, Ben; Staid, Andrea S.; Watson, Jean-Paul W.

This paper presents model formulations for generators that have the ability to use multiple fuels and to switch between them if necessary. These models are used to generate different scenarios of fuel switching penetration from a test power system. With these scenarios, for a severe disruption in the fuel supply to multiple generators, the paper analyzes the effect that fuel switching has on the resilience of the power system. Load not served is used as the proxy metric to evaluate power system resilience. The paper shows that the presence of generators with fuel switching capabilities considerably reduces the amount and duration of the load shed by the system facing the fuel disruption.

More Details

A real power injection control strategy for improving transient stability

IEEE Power and Energy Society General Meeting

Ojetola, Samuel; Wold, Josh; Trudnowski, Daniel; Wilches-Bernal, Felipe; Elliott, Ryan T.

Transient stability is highly correlated to the inertia connected to the synchronous grid. Most of the modern control schemes for maintaining transient stability involve generator tripping schemes. However, these type of schemes may become difficult to implement because of the inertia reduction associated with the increase in inverter-based and distributed generation. This paper presents the effect of using machine acceleration feedback in a real-power injection control scheme to improve transient stability without generator tripping. This scheme is based on the equal area criterion and tested on a one machine infinite bus and a two machine system. Its applicability in a multimachine power system is demonstrated on a reduced-order western North American power system. Simulation results indicate that the proposed control strategy provides a simple and effective method for improving transient stability.

More Details

Inertia estimation in power systems using energy storage and system identification techniques

2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020

Tamrakar, Ujjwol; Guruwacharya, Nischal; Bhujel, Niranjan; Wilches-Bernal, Felipe; Hansen, Timothy M.; Tonkoski, Reinaldo

Fast-frequency control strategies have been proposed in the literature to maintain inertial response of electric generation and help with the frequency regulation of the system. However, it is challenging to deploy such strategies when the inertia constant of the system is unknown and time-varying. In this paper, we present a data-driven system identification approach for an energy storage system (ESS) operator to identify the inertial response of the system (and consequently the inertia constant). The method is first tested and validated with a simulated genset model using small changes in the system load as the excitation signal and measuring the corresponding change in frequency. The validated method is then used to experimentally identify the inertia constant of a genset. The inertia constant of the simulated genset model was estimated with an error of less than 5% which provides a reasonable estimate for the ESS operator to properly tune the parameters of a fast-frequency controller.

More Details
Results 1–25 of 105
Results 1–25 of 105