Publications

Results 1–25 of 113

Search results

Jump to search filters

Probing the Mechanical Properties of 2D Materials via Atomic-Force-Microscopy-Based Modulated Nanoindentation

Small Methods

Dingreville, Remi P.; Wixom, Ryan R.; Khan, Ryan M.; DelRio, Frank W.; Riedo, Elisa; Rejhon, Martin; Li, Yanxiao

As the field of low-dimensional materials (1D or 2D) grows and more complex and intriguing structures are continuing to be found, there is an emerging need for techniques to characterize the nanoscale mechanical properties of all kinds of 1D/2D materials, in particular in their most practical state: sitting on an underlying substrate. While traditional nanoindentation techniques cannot accurately determine the transverse Young's modulus at the necessary scale without large indentations depths and effects to and from the substrate, herein an atomic-force-microscopy-based modulated nanomechanical measurement technique with Angstrom-level resolution (MoNI/ÅI) is presented. This technique enables non-destructive measurements of the out-of-plane elasticity of ultra-thin materials with resolution sufficient to eliminate any contributions from the substrate. This method is used to elucidate the multi-layer stiffness dependence of graphene deposited via chemical vapor deposition and discover a peak transverse modulus in two-layer graphene. While MoNI/ÅI has been used toward great findings in the recent past, here all aspects of the implementation of the technique as well as the unique challenges in performing measurements at such small resolutions are encompassed.

More Details

Deposition and characterization of α-Fe2O3/Pd thin films for neutron reflectometry studies

Journal of Vacuum Science and Technology A

Wang, Hanyu; Self, Ethan C.; Addamane, Sadhvikas J.; Rouleau, Christopher M.; Wixom, Ryan R.; Browning, Katie L.; Veith, Gabriel M.; Liang, Liyuan; Browning, James F.

Here, we report deposition of hematite/Pd thin films on silicon wafers via radio frequency (RF) magnetron sputtering and subsequent characterization for future in situ neutron reflectometry studies. Following deposition, the hematite/Pd thin films were characterized as prepared and after annealing in air for 2h at 400, 500, and 600 °C, respectively. Raman spectroscopy, grazing incidence x-ray diffraction, and neutron reflectometry (NR) were used to characterize the structure and chemical compositions of the thin films. The results indicate that pure α-Fe2O3 (hematite) films were produced, free from other iron oxide phases and impurities. NR data reveal that one intermediate layer between the Pd layer and the hematite layer was formed during sputtering deposition processes. The fitted scattering length density (SLD) of the as-deposited hematite layer is 70% of the theoretical SLD value, indicating that the grains are loosely packed in the RF-deposited hematite films. After annealing at elevated temperatures, the hematite films show increased SLD values but remain comparable to that of preannealed.

More Details

Machine learning for materials science: Barriers to broader adoption

Matter

Boyce, Brad B.; Dingreville, Remi P.; Desai, Saaketh D.; Walker, Elise; Shilt, Troy; Bassett, Kimberly L.; Wixom, Ryan R.; Stebner, Aaron P.; Arroyave, Raymundo; Hattrick-Simpers, Jason; Warren, James A.

Machine learning is on a bit of a tear right now, with advances that are infiltrating nearly every aspect of our lives. In the domain of materials science, this wave seems to be growing into a tsunami. Yet, there are still real hurdles that we face to maximize its benefit. This Matter of Opinion, crafted as a result of a workshop hosted by researchers at Sandia National Laboratories and attended by a cadre of luminaries, briefly summarizes our perspective on these barriers. By recognizing these problems in a community forum, we can share the burden of their resolution together with a common purpose and coordinated effort.

More Details

Study of Chromium Migration in a Nickel-Based Alloy Using Polarized Neutron Reflectometry and Rutherford Backscattering Spectrometry

Journal of Physical Chemistry C

Doucet, Mathieu; Browning, James F.; Doyle, Barney L.; Charlton, Timothy R.; Ambaye, Haile; Seo, Joohyun; Mazza, Alessandro R.; Wenzel, John F.; Burns, George B.; Wixom, Ryan R.; Veith, Gabriel M.

Haynes 230 nickel alloy is one of the main contenders for salt containment in the design of thermal energy storage systems based on molten salts. A key problem for these systems is understanding the corrosion phenomena at the alloy–salt interface, and, in particular, the role played by chromium in these processes. In this study, thin films of Haynes 230, which is also rich in chromium, were measured with polarized neutron reflectometry and Rutherford backscattering spectrometry as a function of annealing temperature. Migration of chromium to the surface was observed for films annealed at 400 and 600 °C. Combining the two techniques determined that more than 60% of chromium comprising the as-prepared Haynes 230 layer moves to the surface when annealed at 600 °C, where it forms an oxide layer.

More Details

Shock interactions with heterogeneous energetic materials

Journal of Applied Physics

Yarrington, Cole Y.; Wixom, Ryan R.

The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

More Details

High-Fidelity Microstructural Characterization and Performance Modeling of Aluminized Composite Propellant

Propellants, Explosives, Pyrotechnics

Kosiba, Graham K.; Wixom, Ryan R.; Oehlschlaeger, Matthew A.

Image processing and stereological techniques were used to characterize the heterogeneity of composite propellant and inform a predictive burn rate model. Composite propellant samples made up of ammonium perchlorate (AP), hydroxyl-terminated polybutadiene (HTPB), and aluminum (Al) were faced with an ion mill and imaged with a scanning electron microscope (SEM) and x-ray tomography (micro-CT). Properties of both the bulk and individual components of the composite propellant were determined from a variety of image processing tools. An algebraic model, based on the improved Beckstead-Derr-Price model developed by Cohen and Strand, was used to predict the steady-state burning of the aluminized composite propellant. In the presented model the presence of aluminum particles within the propellant was introduced. The thermal effects of aluminum particles are accounted for at the solid-gas propellant surface interface and aluminum combustion is considered in the gas phase using a single global reaction. Properties derived from image processing were used directly as model inputs, leading to a sample-specific predictive combustion model.

More Details

Geometry effects on detonation in vapor-deposited hexanitroazobenzene (HNAB)

AIP Conference Proceedings

Tappan, Alexander S.; Wixom, Ryan R.; Knepper, Robert

Physical vapor deposition is a technique that can be used to produce explosive films with controlled geometry and microstructure. Films of the high explosive hexanitroazobenzene (HNAB) were deposited by vacuum thermal evaporation. HNAB deposits in an amorphous state that crystallizes over time into a polycrystalline material with high density and a consistent porosity distribution. In previous work, we evaluated detonation critical thickness in HNAB films in an effectively infinite slab geometry with insignificant side losses. In this work, the effect of geometry on detonation failure was investigated by performing experiments on films with different thicknesses, while also changing lateral dimensions such that side losses became significant. The experimental failure thickness was determined to be 75.5 μm and 71.6 μm, for 400 μm and 1600 μm wide HNAB lines, respectively. It follows from this that the minimum width to achieve detonation behavior representing an infinite slab configuration is greater than 400 μm.

More Details

Spectroscopic analysis of time-resolved emission from detonating thin film explosive samples

AIP Conference Proceedings

Kay, Jeffrey J.; Wixom, Ryan R.; Jilek, Brook A.; Knepper, Robert; Tappan, Alexander S.; Damm, David L.

We report a series of time-resolved spectroscopic measurements that aim to characterize the reactions that occur during shock initiation of high explosives. The experiments employ time-and wavelength-resolved emission spectroscopy to analyze light emitted from detonating thin explosive films. This paper presents analysis of optical emission spectra from hexanitrostilbene (HNS) and pentaerythritol tetranitrate (PETN) thin film samples. Both vibrationally resolved and broadband emission features are observed in the spectra and area as electronic transitions of intermediate species.

More Details
Results 1–25 of 113
Results 1–25 of 113