Publications

Results 1–25 of 215
Skip to search filters

Stability Evaluation of Candidate Precursors for Chemical Vapor Deposition of Hafnium Diboride (HfB2)

ACS Omega

Rimsza, Jessica R.; Chackerian, Samuel C.B.; Boyle, Timothy J.; Hernandez-Sanchez, Bernadette A.

Alternative candidate precursors to [Hf(BH4)4] for low-temperature chemical vapor deposition of hafnium diboride (HfB2) films were identified using density functional theory simulations of molecules with the composition [Hf(BH4)2L2], where L = -OH, -OMe, -O-t-Bu, -NH2, -N═C═O, -N(Me)2, and -N(CH2)5NH2 (1-piperidin-2-amine referred to as Pip2A). Disassociation energies (ED), potential energy surface (PES) scans, ionization potentials, and electron affinities were all calculated to identify the strength of the Hf-L bond and the potential reactivity of the candidate precursor. Ultimately, the low ED (2.07 eV) of the BH4 ligand removal from the Hf atom in [Hf(BH4)4] was partially attributed to an intermediate state where [Hf(BH4)3(H)] and BH3 is formed. Of the candidate precursors investigated, three exhibited a similar mechanism, but only -Pip2A had a PES scan that indicated binding competitive with [Hf(BH4)4], making it a viable candidate for further study.

More Details

Trapped Intermediate of a Meerwein-Pondorf-Verley Reduction of Hydroxy Benzaldehyde to a Dialkoxide by Titanium Alkoxides

Inorganic Chemistry

Boyle, Timothy J.; Guerrero, Fernando; Alam, Todd M.; Dunnigan, Kaylee A.; Sears, Jeremiah M.; Wheeler, David R.

A series of titanium alkoxides ([Ti(OR)4] (OR = OCH(CH3)2 (OPri), OC(CH3)3 (OBut), and OCH2C(CH3)3 (ONep)) were modified with a set of substituted hydroxyl-benzaldehydes [HO-BzA-Lx: X = 1, 2-hydroxybenzaldehyde (L = H), 2-hydroxy-3-methoxybenzaldehyde (OMe-3), 5-bromo-2-hydroxybenzaldehyde (Br-5), 2-hydroxy-5-nitrobenzaldehyde (NO2-5); x = 2, 3,5-di-tert-butyl-2-hydroxybenzaldehyde (But-3,5), 2-hydroxy-3,5-diiodobenzaldehyde (I-3,5)] in pyridine (py). Instead of the expected simple substitution, each of the HO-BzA-Lx modifiers were reduced to their respective diol [(py)(OR)2Ti(κ2(O,μ-O′)(OC6H4 - x(CH2O)-2)(L)x] (OR = OPri, x = 1, L = H (1a), OMe-3 (2a), Br-5 (3a·py), NO2-5 (4a·4py); x = 2, But-3,5 (5a), I-3,5 (6a), ONep; x = 1, L = H (1b), OMe-3 (2b), Br-5 (3b·py), NO2-5 (4b); x = 2, But-3,5 (5b), I-3,5 (6b·py)), as identified by single crystal X-ray studies. The 1H NMR spectral data were complex at room temperature but simplified at high temperatures (70 °C). Diffusion ordered spectroscopy (DOSY) NMR experiments indicated that 2a maintained the dinuclear structure in a solution independent of the temperature, whereas 2b appears to be monomeric over the same temperature range. On the basis of additional NMR studies, the mechanism of the reduction of the HO-BzA-Lx to the dioxide ligand was thought to occur by a Meerwein-Pondorf-Verley (MPV) mechanism. The structures of 1a-6b appear to be the intermediate dioxide products of the MPV reduction, which became "trapped" by the Lewis basic solvate.

More Details

Synergistic Bimetallic Ni/Ag and Ni/Cu Catalysis for Regioselective γ,δ-Diarylation of Alkenyl Ketimines: Addressing β-H Elimination by in Situ Generation of Cationic Ni(II) Catalysts

Journal of the American Chemical Society

Basnet, Prakash; Kc, Shekhar; Dhungana, Roshan K.; Shrestha, Bijay; Boyle, Timothy J.; Giri, Ramesh

We disclose unprecedented synergistic bimetallic Ni/Ag and Ni/Cu catalysts for regioselective γ,δ-diarylation of unactivated alkenes in simple ketimines with aryl halides and arylzinc reagents. The bimetallic synergy, which generates cationic Ni(II) species during reaction, promotes migratory insertion and transmetalation steps and suppresses β-H elimination and cross-coupling, the major side reactions that cause serious problems during alkene difunctionalization. This diarylation reaction proceeds at remote locations to imines to afford, after simple H+ workup, diversely substituted γ,δ-diaryl ketones that are otherwise difficult to access readily with existing methods.

More Details

Synthesis, Characterization, and Nanomaterials Generated from 6,6'-(((2-Hydroxyethyl)azanediyl)bis(methylene))bis(2,4-di- tert-butylphenol) Modified Group 4 Metal Alkoxides

Inorganic chemistry

Boyle, Timothy J.; Farrell, Joshua; Yonemoto, Daniel T.; Sears, Jeremiah M.; Rimsza, Jessica R.; Perales, Diana; Bell, Nelson S.; Cramer, Roger E.; Treadwell, LaRico J.; Renehan, Peter; Adams, Casey J.; Bender, Michael T.; Crowley, William

The impact on the morphology nanoceramic materials generated from group 4 metal alkoxides ([M(OR)4]) and the same precursors modified by 6,6'-(((2-hydroxyethyl)azanediyl)bis(methylene))bis(2,4-di- tert-butylphenol) (referred to as H3-AM-DBP2 (1)) was explored. The products isolated from the 1:1 stoichiometric reaction of a series of [M(OR)4] where M = Ti, Zr, or Hf; OR = OCH(CH3)2(OPr i); OC(CH3)3(OBu t); OCH2C(CH3)3(ONep) with H3-AM-DBP2 proved, by single crystal X-ray diffraction, to be [(ONep)Ti( k4( O,O',O'',N)-AM-DBP2)] (2), [(OR)M(μ( O)- k3( O',O'',N)-AM-DBP2)]2 [M = Zr: OR = OPr i, 3·tol; OBu t, 4·tol; ONep, 5·tol; M = Hf: OR = OBu t, 6·tol; ONep, 7·tol]. The product from each system led to a tetradentate AM-DBP2 ligand and retention of a parent alkoxide ligand. For the monomeric Ti derivative (2), the metal was solved in a trigonal bipyramidal geometry, whereas for the Zr (3-5) and Hf (6, 7) derivatives a symmetric dinuclear complex was formed where the ethoxide moiety of the AM-DBP2 ligand bridges to the other metal center, generating an octahedral geometry. High quality density functional theory level gas-phase electronic structure calculations on compounds 2-7 using Gaussian 09 were used for meaningful time dependent density functional theory calculations in the interpretation of the UV-vis absorbance spectral data on 2-7. Nanoparticles generated from the solvothermal treatment of the ONep/AM-DBP2 modified compounds (2, 5, 7) in comparison to their parent [M(ONep)4] were larger and had improved regularity and dispersion of the final ceramic nanomaterials.

More Details

Fundamentals of Pellet-Clad Debonding

Dingreville, Remi P.; Hattar, Khalid M.; Boyle, Timothy J.; Monterrosa, Anthony M.; Barr, Christopher M.; Weck, Philippe F.; Juan, Pierre-Alexandre J.

This project focused on providing a fundamental mechanistic understanding of the complex degra- dation mechanisms associated with Pellet/Clad Debonding (PCD) through the use of a unique suite of novel synthesis of surrogate spent nuclear fuel, in-situ nanoscale experiments on surrogate interfaces, multi-modeling, and characterization of decommissioned commercial spent fuel. The understanding of a broad class of metal/ceramic interfaces degradation studied within this project provided the technical basis related to the safety of high burn-up fuel, a problem of interest to the DOE.

More Details
Results 1–25 of 215
Results 1–25 of 215