Publications

Results 1–25 of 49
Skip to search filters

Charon User Manual: v. 2.2 (revision1)

Musson, Lawrence M.; Hennigan, Gary L.; Gao, Xujiao G.; Humphreys, Richard H.; Negoita, Mihai N.; Huang, Andy H.

This manual gives usage information for the Charon semiconductor device simulator. Charon was developed to meet the modeling needs of Sandia National Laboratories and to improve on the capabilities of the commercial TCAD simulators; in particular, the additional capabilities are running very large simulations on parallel computers and modeling displacement damage and other radiation effects in significant detail. The parallel capabilities are based around the MPI interface which allows the code to be ported to a large number of parallel systems, including linux clusters and proprietary “big iron” systems found at the national laboratories and in large industrial settings.

More Details

Simulation and investigation of electrothermal effects in heterojunction bipolar transistors

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Gao, Xujiao G.; Hennigan, Gary L.; Musson, Lawrence M.; Huang, Andy H.; Negoita, Mihai N.

We present a comprehensive physics investigation of electrothermal effects in III-V heterojunction bipolar transistors (HBTs) via extensive Technology Computer Aided Design (TCAD) simulation and modeling. We show for the first time that the negative differential resistances of the common-emitter output responses in InGaP/GaAs HBTs are caused not only by the well-known carrier mobility reduction, but more importantly also by the increased base-To-emitter hole back injection, as the device temperature increases from self-heating. Both self-heating and impact ionization can cause fly-backs in the output responses under constant base-emitter voltages. We find that the fly-back behavior is due to competing processes of carrier recombination and self-heating or impact ionization induced carrier generation. These findings will allow us to understand and potentially improve the safe operating areas and circuit compact models of InGaP/GaAs HBTs.

More Details
Results 1–25 of 49
Results 1–25 of 49