Publications

15 Results

Search results

Jump to search filters

Resilient adjudication in non-intrusive inspection with hierarchical object and anomaly detection

Proceedings of SPIE - The International Society for Optical Engineering

Krofcheck, Daniel J.; John, Esther W.; Galloway, Hugh M.; Sorensen, Asael H.; Jameson, Carter D.; Aubry, Connor; Prasadan, Arvind P.; Galasso, Jennifer G.; Goodman, Eric G.; Forrest, Robert F.

Large scale non-intrusive inspection (NII) of commercial vehicles is being adopted in the U.S. at a pace and scale that will result in a commensurate growth in adjudication burdens at land ports of entry. The use of computer vision and machine learning models to augment human operator capabilities is critical in this sector to ensure the flow of commerce and to maintain efficient and reliable security operations. The development of models for this scale and speed requires novel approaches to object detection and novel adjudication pipelines. Here we propose a notional combination of existing object detection tools using a novel ensembling framework to demonstrate the potential for hierarchical and recursive operations. Further, we explore the combination of object detection with image similarity as an adjacent capability to provide post-hoc oversight to the detection framework. The experiments described herein, while notional and intended for illustrative purposes, demonstrate that the judicious combination of diverse algorithms can result in a resilient workflow for the NII environment.

More Details

Big data actionable intelligence architecture

Journal of Big Data

Ma, Tian J.; Garcia, Rudy J.; Danford, Forest L.; Patrizi, Laura P.; Galasso, Jennifer G.; Loyd, Jason

The amount of data produced by sensors, social and digital media, and Internet of Things (IoTs) are rapidly increasing each day. Decision makers often need to sift through a sea of Big Data to utilize information from a variety of sources in order to determine a course of action. This can be a very difficult and time-consuming task. For each data source encountered, the information can be redundant, conflicting, and/or incomplete. For near-real-time application, there is insufficient time for a human to interpret all the information from different sources. In this project, we have developed a near-real-time, data-agnostic, software architecture that is capable of using several disparate sources to autonomously generate Actionable Intelligence with a human in the loop. We demonstrated our solution through a traffic prediction exemplar problem.

More Details

Semisupervised learning for seismic monitoring applications

Seismological Research Letters

Linville, Lisa L.; Anderson, Dylan Z.; Galasso, Jennifer G.; Michalenko, Joshua J.; Draelos, Timothy J.

The impressive performance that deep neural networks demonstrate on a range of seismic monitoring tasks depends largely on the availability of event catalogs that have been manually curated over many years or decades. However, the quality, duration, and availability of seismic event catalogs vary significantly across the range of monitoring operations, regions, and objectives. Semisupervised learning (SSL) enables learning from both labeled and unlabeled data and provides a framework to leverage the abundance of unreviewed seismic data for training deep neural networks on a variety of target tasks. We apply two SSL algorithms (mean-teacher and virtual adversarial training) as well as a novel hybrid technique (exponential average adversarial training) to seismic event classification to examine how unlabeled data with SSL can enhance model performance. In general, we find that SSL can perform as well as supervised learning with fewer labels. We also observe in some scenarios that almost half of the benefits of SSL are the result of the meaningful regularization enforced through SSL techniques and may not be attributable to unlabeled data directly. Lastly, the benefits from unlabeled data scale with the difficulty of the predictive task when we evaluate the use of unlabeled data to characterize sources in new geographic regions. In geographic areas where supervised model performance is low, SSL significantly increases the accuracy of source-type classification using unlabeled data.

More Details

Posters for AA/CE Reception

Kuether, Robert J.; Allensworth, Brooke M.; Backer, Adam B.; Chen, Elton Y.; Dingreville, Remi P.; Forrest, Eric C.; Knepper, Robert; Tappan, Alexander S.; Marquez, Michael P.; Vasiliauskas, Jonathan G.; Rupper, Stephen G.; Grant, Michael J.; Atencio, Lauren C.; Hipple, Tyler J.; Maes, Danae M.; Timlin, Jerilyn A.; Ma, Tian J.; Garcia, Rudy J.; Danford, Forest L.; Patrizi, Laura P.; Galasso, Jennifer G.; Draelos, Timothy J.; Gunda, Thushara G.; Venezuela, Otoniel V.; Brooks, Wesley A.; Anthony, Stephen M.; Carson, Bryan C.; Reeves, Michael J.; Roach, Matthew R.; Maines, Erin M.; Lavin, Judith M.; Whetten, Shaun R.; Swiler, Laura P.

Abstract not provided.

Seismic Phase Identification with Speech Recognition Algorithms

Draelos, Timothy J.; Heck, Stephen H.; Galasso, Jennifer G.; Brogan, Ronald

Seismic signals are composed of the seismic waves (phases) that reach a sensor, similar to the way speech signals are composed of phonemes that reach a listener's ear. Large/small seismic events near/far from a sensor are similar to loud/quiet speakers with high/low-pitched voices. We leverage ideas from speech recognition for the classification of seismic phases at a seismic sensor. Seismic Phase ID is challenging due to the varying paths and distances an event takes to reach a sensor, but there is consistent structure of the makeup (e.g. ordering) of the different phases arriving at the sensor.

More Details
15 Results
15 Results