Studies of size effects on thermal conductivity typically necessitate the fabrication of a comprehensive film thickness series. In this Letter, we demonstrate how material fabricated in a wedged geometry can enable similar, yet higher-throughput measurements to accelerate experimental analysis. Frequency domain thermoreflectance (FDTR) is used to simultaneously determine the thermal conductivity and thickness of a wedged silicon film for thicknesses between 100 nm and 17 μm by considering these features as fitting parameters in a thermal model. FDTR-deduced thicknesses are compared to values obtained from cross-sectional scanning electron microscopy, and corresponding thermal conductivity measurements are compared against several thickness-dependent analytical models based upon solutions to the Boltzmann transport equation. Our results demonstrate how the insight gained from a series of thin films can be obtained via fabrication of a single sample.
Global thinning of integrated circuits is a technique that enables backside failure analysis and radiation testing. Prior work also shows increased thresholds for single-event latchup and upset in thinned devices. We present impacts of global thinning on device performance and reliability of 28 nm node field programmable gate arrays (FPGA). Devices are thinned to values of 50, 10, and 3 microns using a micromachining and polishing method. Lattice damage, in the form of dislocations, extend about 1 micron below the machined surface. The damage layer is removed after polishing with colloidal SiO2 slurry. We create a 2D finite-element model with liner elasticity equations and flip-chip packaged device geometry to show that thinning increases compressive global stress in the Si, while C4 bumps increase stress locally. Measurements of stress using Raman spectroscopy qualitatively agree with our stress model but also reveal the need for more complex structural models to account for nonlinear effects occurring in devices thinned to 3 microns and after temperature cycling to 125 °C. Thermal imaging shows that increased local heating occurs with increased thinning but the maximum temperature difference across the 3-micron die is less than 2 °C. Ring oscillators (ROs) programmed throughout the FPGA fabric slow about 0.5% after thinning compared to full thickness values. Temperature cycling the devices to 125 °C further decreases RO frequency about 0.5%, which we attribute to stress changes in the Si.
Maximum power handling, spike leakage, and failure mechanisms have been characterized for limiters based on the thermally triggered metal-insulator transition of vanadium dioxide. These attributes are determined by properties of the metal-insulator material such as on/off resistance ratio, geometric properties that determine the film resistance and the currentcarrying capability of the device, and thermal properties such as heatsinking and thermal coupling. A limiter with greater than 10 GHz of bandwidth demonstrated 0.5 dB loss, 27 dBm threshold power, 8 Watts blocking power, and 0.4 mJ spike leakage at frequencies near 2 GHz. A separate limiter optimized for high power blocked over 60 Watts of incident power with leakage less than 25 dBm after triggering. The power handling demonstrates promise for these limiter devices, and device optimization presents opportunities for additional improvement in spike leakage, response speed, and reliability.
Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292. The measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. Excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusion currents in nBn photodetectors.