Publications

Results 1–25 of 43

Search results

Jump to search filters

Effect of Properties/Injection Schedule on Fuel Spray Mixing

Pickett, Lyle M.; Skeen, Scott A.

The DOE project for Co-Optimization of Fuels and Engines seeks to define both fuel properties and engine hardware to create cleaner and more fuel-efficient engines. Fuel spray technologies are central to this goal as the spray injection determines the combustible mixtures formed within the engine. Sprays are known to affect bum rate and efficiency, particulate formation and emissions, as well as temperature and engine knock sites. Computational fluid dynamic models must predict complicated interaction between plumes and vaporization to be useful as a design tool for industry. Changes in fuel properties are expected to affect fuel delivery. While Co-Optima fuels may be selected for chemical criteria, such as high octane number rating, an understanding of how the physical properties affect spray performance is necessary to optimize fuel delivery. Many of the selected Co-Optima fuels have properties that are different than standard gasoline, requiring investigations for their performance. A new continuous-flow spray chamber facility has been completed, offering capability to control the pressure and temperature of the gases at engine-relevant conditions at the time of injection as well as a massive increase in data throughput. Direct-injection multi-hole gasoline sprays for different Co-Optima fuels are investigated in this chamber.

More Details

Spray Combustion Cross-Cut Engine Research DOE VT Report

Pickett, Lyle M.; Skeen, Scott A.

All future high-efficiency engines will have fuel directly sprayed into the engine cylinder. Engine developers agree that a major barrier to the rapid development and design of these high-efficiency, clean engines is the lack of accurate fuel spray computational fluid dynamic (CFD) models. The spray injection process largely determines the fuel-air mixture processes in the engine, which subsequently drives combustion and emissions in both direct-injection gasoline and diesel systems. More predictive spray combustion models will enable rapid design and optimization of future high-efficiency engines, providing more affordable vehicles and also saving fuel.

More Details

Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging

Optics Letters

Mazumdar, Yi C.; Cenker, Emre; Richardson, Daniel R.; Kearney, S.P.; Halls, Benjamin R.; Skeen, Scott A.; Shaddix, Christopher R.; Guildenbecher, Daniel R.

Knowledge of soot particle sizes is important for understanding soot formation and heat transfer in combustion environments. Soot primary particle sizes can be estimated by measuring the decay of time-resolved laser-induced incandescence (TiRe-LII) signals. Existing methods for making planar TiRe-LII measurements require either multiple cameras or time-gate sweeping with multiple laser pulses, making these techniques difficult to apply in turbulent or unsteady combustion environments. Here, we report a technique for planar soot particle sizing using a single high-sensitivity, ultra-high-speed 10 MHz camera with a 50 ns gate and no intensifier. With this method, we demonstrate measurements of background flame luminosity, prompt LII, and TiRe-LII decay signals for particle sizing in a single laser shot. The particle sizing technique is first validated in a laminar non-premixed ethylene flame. Then, the method is applied to measurements in a turbulent ethylene jet flame.

More Details

Using ducted fuel injection to attenuate or prevent soot formation in mixing-controlled combustion strategies for engine applications

Applied Energy

Gehmlich, Ryan K.; Mueller, Charles J.; Ruth, D.J.; Nilsen, Christopher W.; Skeen, Scott A.; Manin, Julien L.

Ducted fuel injection is a strategy that can be used to enhance the fuel/charge-gas mixing within the combustion chamber of a direct-injection compression-ignition engine. The concept involves injecting the fuel through a small tube within the combustion chamber to make the most fuel-rich regions of the micture in the autoignition zone leaner relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). This study is a follow-on to initial proof-of-concept experiments that also were conducted in a constant-volume combustion vessel. While the initial natural luminosity imaging experiments demonstrated that ducted fuel injection lowers soot incandescence dramatically, this study adds a more quantitative diffuse back-illumination diagnostic to measure soot mass, as well as investigates the effects on performance of varying duct geometry (axial gap, length, diameter, and inlet and outlet shapes), ambient density, and charge-gas dilution level. The result is that ducted fuel injection is further proven to be effective at lowering soot by 35–100% across a wide range of operating conditions and geometries, and guidance is offered on geometric parameters that are most important for improving performance and facilitating packaging for engine applications.

More Details

Measuring the soot onset temperature in high-pressure n-dodecane spray pyrolysis

Combustion and Flame

Skeen, Scott A.; Yasutomi, Koji

Soot formation in pyrolyzing sprays of n-dodecane is visualized and quantified in a high-pressure, high-temperature, constant-volume spray chamber at 38 bar, 76 bar, and 114 bar. Sprays of n-dodecane are injected at 500 bar from a single-hole, 186-µm orifice diameter fuel injector. We quantify the temporal evolution of the soot optical thickness and the total soot mass formed in the pyrolyzing sprays using a high-speed extinction imaging diagnostic. The vessel ambient temperature and pressure are varied independently to identify the soot onset temperature for n-dodecane pyrolysis. Linear extrapolation of the maximum soot formation rates as a function of ambient temperature reveals a soot onset temperature near 1450 K. The onset temperature determined here for n-dodecane is within 50 K of those previously measured along the centerline of atmospheric pressure coflow diffusion flames for smaller alkane fuels.

More Details

Inter-plume aerodynamics for gasoline spray collapse

International Journal of Engine Research

Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; Frank, Jonathan H.

The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel-air mixing. However, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtained using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. The effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.

More Details

Interplume velocity and extinction imaging measurements to understand spray collapse when varying injection duration or number of injections

Atomization and Sprays

Sphicas, P.; Pickett, Lyle M.; Skeen, Scott A.; Frank, Jonathan H.; Parrish, S.

The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel-air mixing. However, the mechanisms of spray collapse are not fully understood. The purpose of this work is to study the effects of injection duration and multiple injections on the interaction and/or collapse of multiplume gasoline direct injection sprays. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtained using diffused back illumination. Experiments are performed under simulated engine conditions using a symmetric 8-hole injector in a high-temperature, high-pressure vessel at the "Spray G" operating conditions of the Engine Combustion Network. Longer injection duration is found to promote plume collapse, while staging fuel delivery with multiple, shorter injections is resistant to plume collapse.

More Details

Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

Applied Energy

Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; Gehmlich, Ryan K.; Pickett, Lyle M.; Skeen, Scott A.

Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). The results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.

More Details

Time-resolved measurements of mixing quantities in diesel jets

COMODIA 2017 - 9th International Conference on Modeling and Diagnostics for Advanved Engine Systems

Manin, Julien L.; Pickett, Lyle M.; Skeen, Scott A.; Frank, Jonathan H.

Fuel and oxidizer mixing is a key parameter influencing combustion and emission performance in diesel engines. At the same time, quantitative mixing measurements in automotive sprays are very challenging such that only a few experimental results are available as targets for the development and tuning of numerical models. The caveat is that the experimental data mainly concern the quasi-steady part of the jet, while it can be argued that the injection process in current alternative thermal engines is mostly transient. This work applies planar laser Rayleigh scattering at high-frequency to resolve the development and mixing of vaporized diesel sprays injected in a highly-pressurized environment. The state-of-the-art equipment employed for these experiments include a purposely-built high-power, high-repetition rate pulsed burst laser, optimized optics and a state-of-the-art high-speed CMOS camera. Advanced image processing methods were developed and implemented to mitigate the negative effects of the extreme environments found in diesel engines at the time of injection. The experiments provided two-dimensional mean and variance of the mixture and temperature quantities. The optical system's high spatial and temporal resolution enables tracking of the mixing field with time and space, from which temporally and spatially correlated mixing quantities can be extracted. Further analysis of the detailed mixture and temperature fields offered information about the turbulent mixing process of high-pressure diesel sprays such as scalar dissipation rates or turbulent length scales. Substantial effort was made to assess the uncertainties and limitations of such experimental results due to the optically challenging environment.

More Details

Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

Applied Energy

Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; Gehmlich, Ryan K.; Pickett, Lyle M.; Skeen, Scott A.

Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). The results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.

More Details

Understanding the ignition mechanism of high-pressure spray flames

Proceedings of the Combustion Institute

Dahms, Rainer N.; Paczko, Gunter A.; Skeen, Scott A.; Pickett, Lyle M.

A conceptual model for turbulent ignition in high-pressure spray flames is presented. The model is motivated by first-principles simulations and optical diagnostics applied to the Sandia n-dodecane experiment. The combined analysis established a conceptual model for turbulent ignition in high-pressure spray flames which is based on a set of identified characteristic time scales. The suddenly forming steep gradients from successful high-temperature ignition initiate the propagation of a turbulent flame. It rapidly ignites the entire spray head on time scales which are generally significantly smaller than the corresponding cool flame wave time scales.

More Details
Results 1–25 of 43
Results 1–25 of 43