Publications

Results 1–25 of 72

Search results

Jump to search filters

Nanoantenna-Enhanced Resonant Detectors for Improved Infrared Detector Performance

Goldflam, Michael G.; Anderson, Evan M.; Fortune, Torben R.; Klem, John F.; Hawkins, Samuel D.; Davids, Paul D.; Campione, Salvatore; Pung, Aaron J.; Webster, Preston T.; Weiner, Phillip; Finnegan, Patrick S.; Wendt, Joel; Wood, Michael G.; Haines, Chris; Coon, Wesley T.; Olesberg, Jonathon T.; Shaner, Eric A.; Kadlec, Clark N.; Laros, James H.; Sinclair, Michael B.; Tauke-Pedretti, Anna; Kim, Jin K.; Peters, D.W.

Abstract not provided.

Monolithically fabricated tunable long-wave infrared detectors based on dynamic graphene metasurfaces

Applied Physics Letters

Goldflam, Michael G.; Ruiz, Isaac R.; Howell, S.W.; Tauke-Pedretti, Anna; Anderson, Evan M.; Wendt, J.R.; Finnegan, Patrick S.; Hawkins, Samuel D.; Coon, Wesley T.; Fortune, Torben R.; Shaner, Eric A.; Kadlec, Clark N.; Olesberg, Jonathon T.; Klem, John F.; Webster, Preston T.; Sinclair, Michael B.; Kim, Jin K.; Peters, D.W.; Laros, James H.

Here, the design, fabrication, and characterization of an actively tunable long-wave infrared detector, made possible through direct integration of a graphene-enabled metasurface with a conventional type-II superlattice infrared detector, are reported. This structure allows for post-fabrication tuning of the detector spectral response through voltage-induced modification of the carrier density within graphene and, therefore, its plasmonic response. These changes modify the transmittance through the metasurface, which is fabricated monolithically atop the detector, allowing for spectral control of light reaching the detector. Importantly, this structure provides a fabrication-controlled alignment of the metasurface filter to the detector pixel and is entirely solid-state. Using single pixel devices, relative changes in the spectral response exceeding 8% have been realized. These proof-of-concept devices present a path toward solid-state hyperspectral imaging with independent pixel-to-pixel spectral control through a voltage-actuated dynamic response.

More Details

Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material

Applied Physics Letters

Casias, Lilian K.; Morath, Christian P.; Steenbergen, Elizabeth H.; Umana-Membreno, Gilberto A.; Webster, Preston T.; Logan, Julie V.; Kim, Jin K.; Balakrishnan, Ganesh; Faraone, Lorenzo; Krishna, Sanjay

Anisotropic carrier transport properties of unintentionally doped InAs/InAs0.65Sb0.35 type-II strain-balanced superlattice material are evaluated using temperature-and field-dependent magnetotransport measurements performed in the vertical direction on a substrate-removed metal-semiconductor-metal device structure. To best isolate the measured transport to the superlattice, device fabrication entails flip-chip bonding and backside device processing to remove the substrate material and deposit contact metal directly to the bottom of an etched mesa. High-resolution mobility spectrum analysis is used to calculate the conductance contribution and corrected mixed vertical-lateral mobility of the two carrier species present. Combining the latter with lateral mobility results from in-plane magnetotransport measurements on identical superlattice material allows for the calculation of the true vertical majority electron and minority hole mobilities; amplitudes of 4.7 × 10 3 cm2/V s and 1.60 cm2/V s are determined at 77 K, respectively. The temperature-dependent results show that vertical hole mobility rapidly decreases with decreasing temperature due to trap-induced localization and then hopping transport, whereas vertical electron mobility appears phonon scattering-limited at high temperature, giving way to interface roughness scattering at low temperatures, analogous to the lateral electron mobility but with a lower overall magnitude.

More Details

Carrier concentration and transport in Be-doped InAsSb for infrared sensing applications

Proceedings of SPIE - The International Society for Optical Engineering

Casias, Lilian K.; Morath, Christian P.; Steenbergen, Elizabeth H.; Webster, Preston T.; Kim, Jin K.; Cowan, Vincent M.; Balakrishnan, Ganesh; Krishna, Sanjay

Accurate p-type doping of the active region in III-V infrared detectors is essential for optimizing the detector design and overall performance. While most III-V detector absorbers are n-type (e.g., nBn), the minority carrier devices with p-type absorbers would be expected to have relatively higher quantum efficiencies due to the higher mobility of their constituent minority carrier electrons. However, correctly determining the hole carrier concentration in narrow bandgap InAsSb may be challenging due to the potential for electron accumulation at the surface of the material and at its interface with the layer grown directly below it. Electron accumulation layers form high conductance electron channels that can dominate both resistivity and Hall-effect transport measurements. Therefore, to correctly determine the bulk hole concentration and mobility, temperature- and magnetic-field-dependent transport measurements in conjunction with Multi-Carrier Fit analysis were utilized on a series of p-doped InAs0.91Sb0.09 samples on GaSb substrates. Finally, the resulting hole concentrations and mobilities at 77 K (300 K) were 1.6 x 1018 cm-3 (2.3 x 1018 cm-3) and 125 cm2 V-1 s-1 (60 cm2 V-1 s-1), respectively, compared with the intended Be-doping of ~2 x 1018 cm-3.

More Details

Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb

Journal of Applied Physics

Kim, Honggyu; Meng, Yifei; Klem, John F.; Hawkins, Samuel D.; Kim, Jin K.; Zuo, Jian M.

We show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with the scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase in strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ∼1 nm, which suggest the presence of point defects.

More Details

Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs/InAs1-xSbx

Physical Review Applied

Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.; Liu, Shi; Lin, Zhiyuan; Zhang, Yong-Hang; Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Kim, Jin K.; Hawkins, Samuel D.; Klem, John F.

The InAs/InAs1-x Sbx superlattice system distinctly differs from two well-studied superlattice systems GaAs/AlAs and InAs/GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs/InAs1-xSbx system when compared to the other two systems. Here in this work, we report a polarized Raman study of the vibrational properties of the InAs/InAs1-x Sbx superlattices (SLs) as well as selected InAs1-xSbx alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) from both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like “forbidden” LO mode is observed in two parallel-polarization configurations. The InAs1-xSbx alloys lattice matched to the substrate ( xSb ~ 0.09) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (xSb~ 0.35) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs/InAs1-xSbx and InAs/GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural modulation or symmetry reduction.

More Details
Results 1–25 of 72
Results 1–25 of 72