The rate of electric vehicle (EV) adoption, powered by the Li-ion battery, has grown exponentially; largely driven by technological advancements, consumer demand, and global initiatives to reduce carbon emissions. As a result, it is imperative to understand the state of stability (SoS) of the cells inside an EV battery pack. That understanding will enable the warning of or prevention against catastrophic failures that can lead to serious injury or even, loss of life. The present work explores rapid electrochemical impedance spectroscopy (EIS) coupled with gas sensing technology as diagnostics to monitor cells and packs for failure markers. These failure markers can then be used for onboard assessment of SoS. Experimental results explore key changes in single cells and packs undergoing thermal or electrical abuse. Rapid EIS showed longer warning times, followed by VOC sensors, and then H2 sensors. While rapid EIS gives the longest warning time, with the failure marker often appearing before the cell vents, the reliability of identifying impedance changes in single cells within a pack decreases as the pack complexity increases. This provides empirical evidence to support the significant role that cell packaging and battery engineering intricacies play in monitoring the SoS.
Li deposition at the graphitic anode is widely reported in literature as one of the leading causes of capacity fade in lithium-ion batteries (LIBs). Previous literature has linked Li deposition resulting from low-temperature ageing to diminished safety characteristics, however no current research has probed the effects of Li deposition on the abuse response of well-characterized cells. Using overtemperature testing, a relationship between increased concentrations of Li deposition and exacerbated abuse response in 1 Ah pouch cells has been established. A novel Li deposition technique is also investigated, where cells with n:p < 1 (anode-limiting) have been cycled at a high rate to exploit Li+ diffusion limitations at the anode. Scanning Electron Microscopy of harvested anodes indicates substantial Li deposition in low n:p cells after 20 cycles, with intricate networks of Li(s) deposits which hinder Li+ intercalation/deintercalation. Peak broadening and decreased amplitude of differential capacity plots further validates a loss of lithium inventory to Li+ dissolution, and Powder X-ray Diffraction indicates Li+ intercalation with staging in anode interstitial sites as the extent of Li deposition increases. A cradle-to-grave approach is leveraged on cell fabrication and testing to eliminate uncertainty involving the effects of cell additives on Li deposition and other degradation mechanisms.
This paper takes a critical look at the materials aspects of thermal runaway of lithium-ion batteries and correlates contributions from individual cell components to thermal runaway trends. An accelerating rate calorimeter (ARC) was used to evaluate commercial lithium-ion cells based on LiCoO2 (LCO), LiFePO4 (LFP), and LiNixCoyAl1-x-yO2 (NCA) at various states of charge (SOC). Cells were disassembled and the component properties were evaluated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and temperature-resolved X-ray diffraction (TR-XRD). The whole cell thermal runaway onset temperature decreases and peak heating rate increases with SOC due to cathode destabilization. LCO and NCA cathodes are metastable, with NCA cells exhibiting the highest thermal runaway rates. By contrast, the LFP cathode is stable to >500 °C, even when charged. For anodes, the decomposition and whole cell self-heating onset temperature is generally independent of SOC. DSC exotherm onset temperatures of the anodes were generally within 10 °C of the onset of self-heating in whole cell ARC. However, onset temperatures of the cathodes were typically observed above the ARC onset of whole cell runaway. This systematic evaluation of component to whole cell degradation provides a scientific basis for future thermal modeling and design of safer cells.
While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses produced during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. While gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.