Publications

9 Results

Search results

Jump to search filters

Power Handling of Vanadium Dioxide Metal-Insulator Transition RF Limiters

2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, IMWS-AMP 2018

Nordquist, Christopher D.; Leonhardt, Darin; Custer, Joyce O.; Jordan, Tyler S.; Wolfley, Steven; Scott, Sean M.; Sing, Molly N.; Cich, Michael J.; Rodenbeck, Christopher T.

Maximum power handling, spike leakage, and failure mechanisms have been characterized for limiters based on the thermally triggered metal-insulator transition of vanadium dioxide. These attributes are determined by properties of the metal-insulator material such as on/off resistance ratio, geometric properties that determine the film resistance and the currentcarrying capability of the device, and thermal properties such as heatsinking and thermal coupling. A limiter with greater than 10 GHz of bandwidth demonstrated 0.5 dB loss, 27 dBm threshold power, 8 Watts blocking power, and 0.4 mJ spike leakage at frequencies near 2 GHz. A separate limiter optimized for high power blocked over 60 Watts of incident power with leakage less than 25 dBm after triggering. The power handling demonstrates promise for these limiter devices, and device optimization presents opportunities for additional improvement in spike leakage, response speed, and reliability.

More Details

Using convolutional neural networks for human activity classification on micro-Doppler radar spectrograms

Proceedings of SPIE - The International Society for Optical Engineering

Jordan, Tyler S.

This paper presents the findings of using convolutional neural networks (CNNs) to classify human activity from micro-Doppler features. An emphasis on activities involving potential security threats such as holding a gun are explored. An automotive 24 GHz radar on chip was used to collect the data and a CNN (normally applied to image classification) was trained on the resulting spectrograms. The CNN achieves an error rate of 1.65 % on classifying running vs. walking, 17.3 % error on armed walking vs. unarmed walking, and 22 % on classifying six different actions.

More Details

A frequency selective surface with integrated limiter for receiver protection

IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)

Scott, Sean; Nordquist, Christopher D.; Cich, Michael J.; Jordan, Tyler S.; Rodenbeck, Christopher T.

The design and simulation of a frequency selective surface (FSS) with integrated limiter for receiver-protection are presented. The FSS operates as normal until a certain power threshold is reached, at which point the temperature increase triggers a dramatic resistance change across the element, and the insertion loss changes from 0.2 dB to 20 dB. The limiting action is completely passive and automatically reversible. By placing the limiter outside of the system, no portion of the front-end risks damage from high-power signals, a level of protection not offered in conventional limiters. Finally, the design is compatible with standard lithography processes, requires no diodes, ferrites, or additional components, and can potentially be integrated on flexible substrates. © 2012 IEEE.

More Details
9 Results
9 Results