Publications

8 Results
Skip to search filters

Preliminary Analysis of Postclosure DPC Criticality Consequences

Price, Laura L.; Alsaed, Halim A.; Barela, Amanda C.; Brady, Patrick V.; Gelbard, Fred G.; Gross, Mike G.; Nole, Michael A.; Prouty, Jeralyn L.; Banerjee, Kaushik B.; Bhatt, S.B.; Davidson, Greg D.; Fang, Zheng F.; Howard, Rob H.; Johnson, S J.; Painter, Scott P.; Swinney, Mathew S.; Gonzalez, Evan G.

One of the objectives of the United States (U.S.) Department of Energy's (DOE) Office of Nuclear Energy's Spent Fuel and Waste Science and Technology Campaign is to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the U.S. has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of the DOE (Nuclear Waste Policy Act 1982). Any repository licensed to dispose the SNF must meet requirements regarding the longterm performance of that repository. For an evaluation of the long-term performance of the repository, one of the events that may need to be considered is the SNF achieving a critical configuration. Of particular interest is the potential behavior of SNF in dual-purpose canisters (DPCs), which are currently being used to store and transport SNF but were not designed for permanent geologic disposal. A two-phase study has been initiated to begin examining the potential consequences, with respect to longterm repository performance, of criticality events that might occur during the postclosure period in a hypothetical repository containing DPCs. Phase I, a scoping phase, consisted of developing an approach intended to be a starting point for the development of the modeling tools and techniques that may eventually be required either to exclude criticality from or to include criticality in a performance assessment (PA) as appropriate; Phase I is documented in Price et al. (2019). The Phase I approach guided the analyses and simulations done in Phase II to further the development of these modeling tools and techniques as well as the overall knowledge base. The purpose of this report is to document the results of the analyses conducted during Phase II. The remainder of Section 1 presents the background, objective, and scope of this report, as well as the relevant key assumptions used in the Phase II analyses and simulations. Subsequent sections discuss the analyses that were conducted (Section 2), the results of those analyses (Section 3), and the summary and conclusions (Section 4). This report fulfills the Spent Fuel and Waste Science and Technology Campaign deliverable M2SF-20SN010305061.

More Details

Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

Price, Laura L.; Barela, Amanda C.; Schetnan, Richard R.; Walkow, Walter M.

The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

More Details

Completion of Population of and Quality Assurance on the Nuclear Fuel Cycle Options Catalog

Price, Laura L.; Barela, Amanda C.; Walkow, Walter M.; Schetnan, Richard R.; Arnold, Matthew B.

An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.

More Details

Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions

Price, Laura L.; Barela, Amanda C.; Schetnan, Richard R.; Walkow, Walter M.

The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

More Details
8 Results
8 Results