Experimental Wargaming at Sandia National Laboratories
Abstract not provided.
Abstract not provided.
Military Operations Research (United States)
Wargames are a common tool for investigating complex conflict scenarios and have a long history of informing military and strategic study. Historically, these games have often been one offs, may not rigorously collect data, and have been built primarily for exploration rather than developing data-driven analytical conclusions. Experimental wargaming, a new wargaming approach that employs the basic principles of experimental design to facilitate an objective basis for exploring fundamental research questions around human behavior (such as understanding conflict escalation), is a potential tool that can be used in combination with existing wargaming approaches. The Project on Nuclear Gaming, a consortium involving the University of California, Berkeley, Sandia National Laboratories, and Lawrence Livermore National Laboratory, developed an experimental wargame, SIGNAL, to explore questions surrounding conflict escalation and strategic stabil-ity in the nuclear context. To date, the SIGNAL experimental wargame has been played hundreds of times by thousands of players from around the world, creating the largest data-base of wargame data for academic purposes known to the authors. This paper discusses the design of SIGNAL, focusing on how the principles of experimental design influenced this design.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Through cyberattacks on information technology and digital communications systems, antagonists have increasingly been able to alter the strategic balance in their favor without provoking serious consequences. Conflict within and through the cyber domain is inherently different from conflict in other domains that house our critical systems. These differences result in new challenges for defending and creating resilient systems, and for deterring those who would wish to disrupt or destroy them. The purpose of this paper is to further examine the question of whether or not deterrence can be an effective strategy in cyber conflict, given our broad and varied interests in cyberspace. We define deterrence broadly as the creation of conditions that dissuade antagonists from taking unwanted actions because they believe that they will incur unacceptably high costs and/or receive insufficient benefits from taking that action. Deterrence may or may not be the most credible or effective strategy for achieving our desired end states in cybersecurity. Regardless of the answer here, however, it is important to consider why deterrence strategies might succeed under certain conditions, and to understand why deterrence is not effective within the myriad contexts that it appears fail. Deterrence remains a key component of U.S. cyber strategy, but there is little detail on how to operationalize or implement this policy, how to bring a whole-of-government and whole-of- private-sector approach to cyber deterrence, which types of antagonists can or should be deterred, and in which contexts. Moreover, discussion about how nations can and should respond to significant cyber incidents largely centers around whether or not the incident constitutes a "use of force," which would justify certain types of responses according to international law. However, we believe the "use of force" threshold is inadequate to describe the myriad interests and objectives of actors in cyberspace, both attackers and defenders. In this paper, we propose an approach to further examine if deterrence is an effective strategy and under which conditions. Our approach includes systematic analysis of cyber incident scenarios using a framework to evaluate the effectiveness of various activities in influencing antagonist behavior. While we only examine a single scenario for this paper, we propose that additional work is needed to more fully understand how various alternative thresholds constrain or unleash options for actors to influence one another's behavior in the cyber domain.
Proceedings of the 2020 Spring Simulation Conference, SpringSim 2020
National security decisions are driven by complex, interconnected contextual, individual, and strategic variables. Modeling and simulation tools are often used to identify relevant patterns, which can then be shaped through policy remedies. In the paper to follow, however, we argue that models of these scenarios may be prone to the complexity-scarcity gap, in which relevant scenarios are too complex to model from first principles and data from historical scenarios are too sparse - making it difficult to draw representative conclusions. The result are models that are either too simple or are unduly biased by the assumptions of the analyst. We outline a new method of quantitative inquiry - experimental wargaming - as a means to bridge the complexity-scarcity gap that offers human-generated, empirical data to inform a variety of model and simulation tasks (model building, calibration, testing, and validation). Below, we briefly describe SIGNAL - our first-of-a-kind experimental wargame designed to study strategic stability in conflict settings with nuclear weapons. We then highlight the potential utility of this data for modeling and simulation efforts in the future using this data.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Science
We report that over the past century, and particularly since the outset of the Cold War, wargames (interactive simulations used to evaluate aspects of tactics, operations, and strategy) have become an integral means for militaries and policy-makers to evaluate how strategic decisions are made related to nuclear weapons strategy and international security. Furthermore, these methods have also been applied beyond the military realm, to examine phenomena as varied as elections, government policy, international trade, and supply-chain mechanics. Today, a renewed focus on wargaming combined with access to sophisticated and inexpensive drag-and-drop digital game development frameworks and new cloud computing architectures have democratized the ability to enable massive multiplayer gaming experiences. With the integration of simulation tools and experimental methods from a variety of social science disciplines, a science-based experimental gaming approach has the potential to transform the insights generated from gaming by creating human-derived, large-n datasets for replicable, quantitative analysis. In the following, we outline challenges associated with contemporary simulation and wargaming tools, investigate where scholars have searched for game data, and explore the utility of new experimental gaming and data analysis methods in both policy-making and academic settings.
Abstract not provided.
Abstract not provided.