Long Duration Solar Thermal Energy Storage
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Combinatorial Science
Characterization of photovoltaic (PV) module materials throughout different stages of service life is crucial to understanding and improving the durability of these materials. Currently the large-scale of PV modules (>1 m2) is imbalanced with the small-scale of most materials characterization tools (≤1 cm2). Furthermore, understanding degradation mechanisms often requires a combination of multiple characterization techniques. Here, we present adaptations of three standard materials characterization techniques to enable mapping characterization over moderate sample areas (≥25 cm2). Contact angle, ellipsometry, and UV-vis spectroscopy are each adapted and demonstrated on two representative samples: a commercial multifunctional coating for PV glass and an oxide combinatorial sample library. Best practices are discussed for adapting characterization techniques for large-area mapping and combining mapping information from multiple techniques.
Chemical Physics Letters
The incorporation of uranium, plutonium and technetium in the negative thermal expansion (NTE) α-Zr(WO4)2 has been investigated within the framework of density functional theory (DFT). It is found that the vacancy formation energies of the charged vacancies are overall larger than that of its counterpart neutral Frenkel defects and Schottky defects. DFT calculations suggest that U and Pu substitutions for the Zr site are preferred in α-Zr(WO4)2. In case of Tc substitution, both Tc(IV) for the Zr site and Tc(VII) for the W site are considered under oxygen-poor and oxygen-rich conditions, while Tc(VII) substitution can be improved significantly by including Y2O3 (charge compensation).
Journal of Physics Condensed Matter
Classical molecular dynamics (MD) simulations were performed to provide a conceptual understanding of the amorphous-crystalline interface for a candidate negative thermal expansion (NTE) material, ZrW2O8. Simulations of pressure-induced amorphization at 300 K indicate that an amorphous phase forms at pressures of 10 GPa and greater, and this phase persists when the pressure is subsequently decreased to 1 bar. However, the crystalline phase is recovered when the slightly distorted 5 GPa phase is relaxed to 1 bar. Simulations were also performed on a two-phase model consisting of the high-pressure amorphous phase in direct contact with the crystalline phase. Upon equilibration at 300 K and 1 bar, the crystalline phase remains unchanged beyond a thin layer of disrupted structure at the crystalline-amorphous interface. Differences in local atomic structure at the interface are quantified from the simulation trajectories.
Abstract not provided.
This report describes the potential of a novel class of materials—α-ZrW2O8, Zr2WP2O12, and related compounds that contract upon amorphization as possible radionuclide waste-forms. The proposed ceramic waste-forms would consist of zoned grains, or sintered ceramics with center- loaded radionuclides and barren shells. Radiation-induced amorphization would result in core shrinkage but would not fracture the shells or overgrowths, maintaining isolation of the radionuclide. In this report, we have described synthesis techniques to produce phase-pure forms of the materials, and how to fully densify those materials. Structural models for the materials were developed and validated using DFPT approaches, and radionuclide substitution was evaluated; U(IV), Pu(IV), Tc(IV) and Tc(VII) all readily substitute into the material structures. MD modeling indicated that strain associated with radiation-induced amorphization would not affect the integrity of surrounding crystalline materials, and these results were validated via ion beam experimental studies. Finally, we have evaluated the leach rates of the barren materials, as determined by batch and flow-through reactor experiments. ZrW2O8 leaches rapidly, releasing tungstate while Zr is retained as a solid oxide or hydroxide. Tungsten release rates remain elevated over time and are highly sensitive to contact times, suggesting that this material will not be an effective waste-form. Conversely, tungsten releases rates from Zr2WP2O12 rapidly drop, show little dependence on short-term changes in fluid contact time, and in over time, become tied to P release rates. The results presented here suggest that this material may be a viable waste-form for some hard-to-handle radionuclides such as Pu and Tc.
Journal of Physical Chemistry C
The phonon, infrared, and Raman spectroscopic properties of zirconium tungsten phosphate, Zr2(WO4)(PO4)2 (space group Pbcn, IT No. 60; Z = 4), have been extensively investigated using density functional perturbation theory (DFPT) calculations with the Perdew, Burke, and Ernzerhof exchange-correlation functional revised for solids (PBEsol) and validated by experimental characterization of Zr2(WO4)(PO4)2 prepared by hydrothermal synthesis. Using DFPT-simulated infrared, Raman, and phonon density-of-state spectra combined with Fourier transform infrared and Raman measurements, new comprehensive and extensive assignments have been made for the spectra of Zr2(WO4)(PO4)2, resulting in the characterization of its 29 and 34 most intense IR- and Raman-active modes, respectively. DFPT results also reveal that ν1(PO4) symmetric stretching and ν3(PO4) antisymmetric stretching bands have been interchanged in previous Raman experimental assignments. Negative thermal expansion in Zr2(WO4)(PO4)2 appears to have very limited impact on the spectral properties of this compound. This work shows the high accuracy of the PBEsol exchange-correlation functional for studying the spectroscopic properties of crystalline materials using first-principles methods.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International High-Level Radioactive Waste Management 2019, IHLRWM 2019
We have investigated cubic zirconium tungstate (ZrW2O8) using density functional perturbation theory (DFPT), along with experimental characterization to assess and validate computational results. Cubic zirconium tungstate is among the few known materials exhibiting isotropic negative thermal expansion (NTE) over a broad temperature range, including room temperature where it occurs metastably. Isotropic NTE materials are important for technological applications requiring thermal-expansion compensators in composites designed to have overall zero or adjustable thermal expansion. While cubic zirconium tungstate has attracted considerable attention experimentally, a very few computational studies have been dedicated to this well-known NTE material. Therefore, spectroscopic, mechanical and thermodynamic properties have been derived from DFPT calculations. A systematic comparison of the calculated infrared, Raman, and phonon density-of-state spectra has been made with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements. The thermal evolution of the lattice parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with the observed negative thermal expansion characteristics of cubic zirconium tungstate, α-ZrW2O8. These results show that this DFPT approach can be used for studying the spectroscopic, mechanical and thermodynamic properties of prospective NTE ceramic waste forms for encapsulation of radionuclides produced during the nuclear fuel cycle.
Abstract not provided.
International High-Level Radioactive Waste Management 2019, IHLRWM 2019
Appropriate waste-forms for radioactive materials must isolate the radionuclides from the environment for long time periods. To accomplish this typically requires low waste-form solubility, to minimize radionuclide release to the environment. However, radiation eventually damages most waste-forms, leading to expansion, crumbling, increased exposed surface area, and faster dissolution. We have evaluated the use of a novel class of materials-ZrW2O8, Zr2P2WO12 and related compounds-that contract upon amorphization. The proposed ceramic waste-forms would consist of zoned grains, or sintered ceramics with center-loaded radionuclides and barren shells. Radiation-induced amorphization would result in core shrinkage but would not fracture the shells or overgrowths, maintaining isolation of the radionuclide. We have synthesized these phases and have evaluated their leach rates. Tungsten forms stable aqueous species at neutral to basic conditions, making it a reliable indicator of phase dissolution. ZrW2O8 leaches rapidly, releasing tungstate while Zr is retained as a solid oxide or hydroxide. Tungsten release rates remain elevated over time and are highly sensitive to contact times, suggesting that this material will not be an effective waste-form. Conversely, tungsten release rates from Zr2P2WO12 rapidly drop and are tied to P release rates; we speculate that a low-solubility protective Zr-phosphate leach layer forms, slowing further dissolution.
Abstract not provided.