Publications

Results 1–25 of 121

Search results

Jump to search filters

Update on the Simulation of Commercial Drying of Spent Nuclear Fuel

Durbin, S.G.; Lindgren, Eric R.; Pulido, Ramon P.; Laros, James H.; Fasano, Raymond E.

The purpose of this report is to document improvements in the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes.

More Details

Continued Investigations of Respirable Release Fractions for Stress Corrosion Crack-Like Geometries

Durbin, S.G.; Pulido, Ramon P.; Perales, Adrian G.; Lindgren, Eric R.; Jones, Philip G.; Mendoza, Hector M.; Phillips, Jesse P.; Lanza, M.; Casella, A.

The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of an SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the commercial practice of using relatively high backfill pressures (up to approximately 800 kPa) in the canister to enhance internal natural convection. This pressure differential offers a comparatively high driving potential for blowdown of any particulates that might be present in the canister. In this study, the rates of gas flow and aerosol transmission of a spent fuel surrogate through an engineered microchannel with dimensions representative of an SCC were evaluated experimentally using coupled mass flow and aerosol analyzers. The microchannel was formed by mating two gage blocks with a linearly tapering slot orifice nominally 13 μm (0.005 in.) tall on the upstream side and 25 μm (0.0010 in.) tall on the downstream side. The orifice is 12.7 mm (0.500 in.) wide by 8.89 mm (0.350 in.) long (flow length). Surrogate aerosols of cerium oxide, CeO2, were seeded and mixed with either helium or air inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively. These data sets are intended to demonstrate a new capability to characterize SCCs under well-controlled boundary conditions. Modeling efforts were also initiated that evaluate the depletion of aerosols in a commercial dry storage canister. These preliminary modeling and ongoing testing efforts are focused on understanding the evolution in both size and quantity of a hypothetical release of aerosolized spent fuel particles from failed fuel to the canister interior and ultimately through an SCC.

More Details

Status Update for the Canister Deposition Field Demonstration

Durbin, S.G.; Lindgren, Eric R.; Suffield, Sarah R.; Fort, James A.

This report updates the high-level test plan for evaluating surface deposition on three commercial 32PTH2 spent nuclear fuel (SNF) canisters inside NUTECH Horizontal Modular Storage (NUHOMS) Advanced Horizontal Storage Modules (AHSM) from Orano (formerly Transnuclear Inc.) and provides a description of the surface characterization activities that have been conducted to date. The details contained in this report represent the best designs and approaches explored for testing as of this publication. Given the rapidly developing nature of this test program, some of these plans may change to accommodate new objectives or requirements. The goal of the testing is to collect highly defensible and detailed surface deposition measurements from the surface of dry storage canisters in a marine coastal environment to guide chloride-induced stress corrosion crack (CISCC) research. To facilitate surface sampling, the otherwise highly prototypic dry storage systems will not contain SNF but rather will be electrically heated to mimic the thermal-hydraulic-environment. Instrumentation throughout the canister, storage module, and environment will provide an extensive amount of information for the use of model validation. Manual sampling over a comprehensive portion of the canister surface at regular time intervals will offer a high-fidelity quantification of the conditions experienced in a harsh yet realistic environment.

More Details

Investigation of Thermal-Hydraulic Effects of Dry Storage Canister Helium Backfill Loss Using the Horizontal Dry Cask Simulator

Pulido, Ramon P.; Fasano, Raymond E.; Lindgren, Eric R.; Laros, James H.; Vice, Gregory T.; Durbin, S.G.

A previous investigation produced data sets that can be used to benchmark the codes and best practices presently used to determine cladding temperatures and induced cooling air flows in modern horizontal dry storage systems. The horizontal dry cask simulator (HDCS) was designed to generate this benchmark data and add to the existing knowledge base. The objective of the previous HDCS investigation was to capture the dominant physics of a commercial dry storage system in a well-characterized test apparatus for a wide range of operational parameters. The close coupling between the thermal response of the canister system and the resulting induced cooling air flow rate was of particular importance. The previous investigation explored these parameters using helium backfill at 100 kPa and 800 kPa pressure as well as air backfill with a series of simulated decay heats. The helium tests simulated a horizontal dry cask storage system at normal storage conditions with either atmospheric or elevated backfill pressure, while the air tests simulated horizontal storage canisters following a complete loss of helium backfill, in which case the helium would be replaced by air. The present HDCS investigation adds to the previous investigation by exploring steady-state conditions at various stages of the loss of helium backfill from a horizontal dry cask storage system. This is achieved by using helium/air blends as a backfill in the HDCS and running a series of tests using various simulated decay heats to explore the effects of relative helium/air molar concentration on the thermal response of a simulated horizontal dry cask storage system. A total of twenty tests were conducted where the HDCS achieved steady state for various assembly powers, representative of decay heat. The power levels tested were 0.50, 1.00, 2.50, and 5.00 kW. All tests were run at 100 kPa vessel pressure. The backfill gases used in these tests are given in this report as a function of mole fraction of helium (He), balanced by air: 1.0, 0.9, 0.5, 0.1, and 0.0 He. Steady-state conditions (where the steady-state start condition is defined as where the change in temperature with respect to time for the majority of HDCS components is less than or equal to 0.3 K/h) were achieved for all test cases.

More Details

Preliminary Test Design and Plan for a Canister Deposition Field Demonstration

Durbin, S.G.; Lindgren, Eric R.

This report provides a high-level test plan for deploying three commercial 32PTH2 spent nuclear fuel (SNF) canisters inside NUHOMS Advanced Horizontal Storage Modules (AHSM) from Orano (formerly Transnuclear Inc.). The details contained in this report represent the best designs and approaches explored for testing as of this publication. Given the rapidly developing nature of this test program, some of these plans may change to accommodate new objectives or adapt in response to conflicting requirements. The goal of the testing is to collect highly defensible and detailed surface deposition measurements from the surface of dry storage systems in a marine coastal environment to guide chloride-induced stress corrosion crack (CISCC) research. To facilitate surface sampling, the otherwise highly prototypic dry storage systems will not contain SNF but rather will be electrically heated to mimic the thermal-hydraulic environment. Instrumentation throughout the canister, storage module, and environment will provide an extensive amount of information for the use of model validation. Manual sampling over a comprehensive portion of the canister surface at regular time intervals will offer a high-fidelity quantification of the conditions experienced in a harsh yet realistic environment.

More Details

Blind Modeling Validation Exercises Using the Horizontal Dry Cask Simulator

Pulido, Ramon P.; Fasano, Raymond E.; Lindgren, Eric R.; Koenig, Greg J.; Durbin, S.G.; Zigh, Abdelghani; Solis, Jorge; Hall, Kimbal; Suffield, Sarah R.; Richmond, David J.; Fort, James A.; Lloret, Miriam; Galban, Marta; Sabater, Adrian

The U.S. Department of Energy (DOE) established a need to understand the thermal-hydraulic properties of dry storage systems for commercial spent nuclear fuel (SNF) in response to a shift towards the storage of high-burnup (HBU) fuel (> 45 gigawatt days per metric ton of uranium, or GWd/MTU). This shift raises concerns regarding cladding integrity, which faces increased risk at the higher temperatures within spent fuel assemblies present within HBU fuel compared to low-burnup fuel (≤ 45 GWd/MTU). A dry cask simulator (DCS) was built at Sandia National Laboratories (SNL) in Albuquerque, New Mexico to produce validation-quality data that can be used to test the accuracy of the modeling used to predict cladding temperatures. These temperatures are critical to evaluating cladding integrity throughout the storage cycle of commercial spent nuclear fuel. A model validation exercise was previously carried out for the DCS in a vertical configuration. Lessons learned during the previous validation exercise have been applied to a new, blind study using a horizontal dry cask simulator (HDCS). Three modeling institutions – the Nuclear Regulatory Commission (NRC), Pacific Northwest National Laboratory (PNNL), and Empresa Nacional del Uranio, S.A., S.M.E. (ENUSA) – were granted access to the input parameters from the DCS Handbook, SAND2017-13058R, and results from a limited data set from the horizontal BWR dry cask simulator tests reported in the HDCS update report, SAND2019-11688R. With this information, each institution was tasked to calculate peak cladding temperatures and air mass flow rates for ten HDCS test cases. Axial as well as vertical and horizontal transverse temperature profiles were also calculated. These calculations were done using modeling codes (ANSYS/Fluent, STAR-CCM+, or COBRA-SFS), each with their own unique combination of modeling assumptions and boundary conditions. For this validation study, the ten test cases of the horizontal dry cask simulator were defined by three independent variables – fuel assembly decay heat (0.5 kW, 1 kW, 2.5 W, and 5 kW), internal backfill pressure (100 kPa and 800 kPa), and backfill gas (helium and air). The plots provided in Chapter 3 of this report show the axial, vertical, and horizontal temperature profiles obtained from the dry cask simulator experiments in the horizontal configuration and the corresponding models used to describe the thermal-hydraulic behavior of this system. The tables provided in Chapter 3 illustrate the closeness of fit of the model data to the experiment data through root mean square (RMS) calculations of the error in peak cladding temperatures (PCTs), PCT axial locations, axial temperature profiles, vertical and horizontal temperature profiles at two different axial locations, and air mass flow rates for the ten test cases, normalized by the experimental results. The model results are assigned arbitrary model numbers to retain anonymity. Due to the relatively flat axial temperature profiles, small temperature gradients resulted in large deviations of all models’ PCT axial location from the experimental PCT axial location. When the PCT axial location error is excluded in the calculation of the combined RMS of the normalized errors that considers PCT, the temperature profiles, and the air mass flow rates, the model data fits the experimental data to within 5%. When the vault information is excluded, the model data fits the experimental data to within 2.5%. An error analysis was developed further for one model, using the model and experimental uncertainties in each validation parameter to calculate validation uncertainties. The uncertainties for each parameter were used to define quantifiable validation criteria. For this analysis, the model was considered validated for a given comparison metric if the normalized error in that metric divided by the validation uncertainty was less than or equal to 1. When considering the combined RMS of the normalized errors of all metrics divided by their validation uncertainties, the model was found to have satisfied the criterion for model validation.

More Details

Estimation of Respirable Aerosol Release Fractions through Stress Corrosion Crack-Like Geometries

Durbin, S.G.; Lindgren, Eric R.

The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of an SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the significant backfill pressurization of the canister, up to approximately 800 kPa. This pressure differential offers a relatively high driving potential for blowdown of any particulates that might be present in the canister. In this study, the carrier gas flow rates and aerosol transmission properties were evaluated for an engineered microchannel with characteristic dimensions similar to those of an SCC. The microchannel was formed by mating two gage blocks with a slot orifice measuring 28.9 μm (0.0011 in.) tall by 12.7 mm (0.500 in.) wide by 8.86 mm (0.349 in.) long (flow length). Surrogate aerosols of cerium oxide, Ce02, were seeded and mixed inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively. These data sets are intended to demonstrate a new capability to characterize SCCs under well-controlled boundary conditions. Separate modeling efforts are also underway that will be validated using these data. The test apparatus and procedures developed in this study can be easily modified for the evaluation of more complex SCC-like geometries including laboratory-grown SCC samples.

More Details

Development of Mockups and Instrumentation for Spent Fuel Drying Tests

Salazar III, Alex; Lindgren, Eric R.; Fasano, Raymond E.; Pulido, Ramon P.; Durbin, S.G.

The purpose of this report is to provide updates on the experimental components, methodology, and instrumentation under development for use in advanced studies of realistic drying operations conducted on surrogate spent nuclear fuel. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. Water remaining in canisters upon completion of drying procedures can lead to cladding corrosion, embrittlement, and breaching, as well as fuel degradation. Additional information is needed on the drying process efficacy to help evaluate the potential impacts of water retention on extended longterm dry storage. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations. Smaller-scale tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report describes the implementation of moisture monitoring equipment on a pressurized, submersible system employing a single waterproof, electrically heated spent fuel rod simulator as a demonstration of analytical capabilities during a drying process. A mass spectrometer with specially designed inlets was used to monitor moisture and other gases at 150 kPa to 800 kPa for a test simulating a forced helium dehydration procedure and below 1 torr for tests mimicking a vacuum drying process. The dew point data from the mass spectrometer was found to be in good agreement with a solid-state moisture probe. A distinct advantage of the mass spectrometer system was the capability to directly sample from the hightemperature (>200 °C) head space expected in a prototypic scale experiment where a solid-state moisture probe would suffer considerable loss of accuracy or fail altogether. The operational and analytical experiences gained from this test series are poised to support an expansion to assembly-scale tests at prototypic length. These assemblies are designed to feature prototypic assembly hardware, advanced diagnostics for in situ internal rod pressure monitoring, and failed fuel rod simulators with engineered cladding defects to challenge the drying system with waterlogged fuel.

More Details

Modeling Validation Exercises Using the Dry Cask Simulator

Pulido, Ramon P.; Lindgren, Eric R.; Durbin, S.G.; Zigh, Abdelghani; Solis, Jorge; Suffield, Sarah; Richmond, David; Fort, James; Herranz, Luis; Feria, Francisco; Penalva, Jaime; Lloret, Miriam; Galban, Marta; Benavides, Julio; Jimenez, Gonzalo

The U.S. Department of Energy (DOE) established a need to understand the thermal-hydraulic properties of dry storage systems for commercial spent nuclear fuel (SNF) in response to a shift towards the storage of high-burnup (HBU) fuel (> 45 gigawatt days per metric ton of uranium, or GWd/MTU). This shift raises concerns regarding cladding integrity, which faces increased risk at the higher temperatures within spent fuel assemblies present within HBU fuel compared to low-burnup fuel (≤ 45 GWd/MTU). The dry cask simulator (DCS) was previously built at Sandia National Laboratories (SNL) in Albuquerque, New Mexico to produce validation-quality data that can be used to test the validity of the modeling used to determine cladding temperatures in modern vertical dry casks. These temperatures are critical to evaluating cladding integrity throughout the storage cycle of commercial spent nuclear fuel. In this study, a model validation exercise was carried out using the data obtained from dry cask simulator testing in the vertical, aboveground configuration. Five modeling institutions – Nuclear Regulatory Commission (NRC), Pacific Northwest National Laboratory (PNNL), Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas (CIEMAT), and Empresa Nacional del Uranio, S.A., S.M.E. (ENUSA) in collaboration with Universidad Politécnica de Madrid (UPM) – were granted access to the input parameters from SAND2017-13058R, “Materials and Dimensional Reference Handbook for the Boiling Water Reactor Dry Cask Simulator”, and results from the vertical aboveground BWR dry cask simulator tests reported in NUREG/CR-7250, “Thermal-Hydraulic Experiments Using A Dry Cask Simulator”. With this information, each institution was tasked to calculate minimum, average, and maximum fuel axial temperature profiles for the fuel region as well as the axial temperature profiles of the DCS structures. Transverse temperature profiles and air mass flow rates within the dry cask simulator were also calculated. These calculations were done using modeling codes (ANSYS FLUENT, STARCCM+, or COBRA-SFS), each with their own unique combination of modeling assumptions and boundary conditions. For this validation study, four test cases of the vertical, aboveground dry cask simulator were considered, defined by two independent variables – either 0.5 kW or 5 kW fuel assembly decay heat, and either 100 kPa or 800 kPa internal helium pressure. For the results in this report, each model was assigned a model number. Three of the models used porous media model representations of the fuel, two models used explicit fuel representations, and one model used an explicit subchannel representation of the fuel. Even numbers were assigned to explicit fuel models and odd numbers were assigned to porous media models. The plots provided in Chapter 3 of this report show the axial and transverse temperature profiles obtained from the dry cask simulator experiments in the aboveground configuration and the corresponding models used to describe the thermal-hydraulic behavior of this system. The tables provided in Chapter 3 illustrate the closeness of fit of the model data to the experiment data through root mean square (RMS) calculations of the error in peak cladding temperatures (PCTs), average fuel temperatures across six axial levels, transverse temperatures across the PCT locations for the four test cases, and air mass flow rates. The peak cladding temperature is typically the most important target variable for cask performance, and all models capture the PCT within 5% RMS error. Two models show comparable fits to experimental results when considering the combined RMS error of all target variables. Since one uses a porous media representation of the fuel while the other uses an explicit fuel representation, it can be concluded that the porous media fuel representation can achieve modeling calculation results of peak cladding temperatures, average fuel temperatures, transverse temperatures, and air mass flow rates that are comparable to explicit fuel representation modeling results.

More Details
Results 1–25 of 121
Results 1–25 of 121