Recent Advances in Microfabricated Gas Chromatography for Process Analysis
Abstract not provided.
Abstract not provided.
Abstract not provided.
In this report, we evaluate a novel method for modeling the spread of COVID-19 pandemic. In this new approach we leverage methods and algorithms developed for fully-kinetic plasma physics simulations using Particle-In-Cell (PIC) Direct Simulation Monte-Carlo (DSMC) models. This approach then leverages Sandia-unique simulation capabilities, and High-Performance Computer (HPC) resources and expertise in particle-particle interactions using stochastic processes. Our hypothesis is that this approach would provide a more efficient platform with assumptions based on physical data that would then enable the user to assess the impact of mitigation strategies and forecast different phases of infection. This work addresses key scientific questions related to the assumptions this new approach must make to model the interactions of people using algorithms typically used for modeling particle interactions in physics codes (kinetic plasma, gas dynamics). The model developed uses rational/physical inputs while also providing critical insight; the results could serve as inputs to, or alternatives for, existing models. The model work presented was developed over a four-week time frame, thus far showing promising results and many ways in which this model/approach could be improved. This work is aimed at providing a proof-of-concept for this new pandemic modeling approach, which could have an immediate impact on the COVID-19 pandemic modeling, while laying a basis to model future pandemic scenarios in a manner that is timely and efficient. Additionally, this new approach provides new visualization tools to help epidemiologists comprehend and articulate the spread of this and other pandemics as well as a more general tool to determine key parameters needed in order to better predict pandemic modeling in the future. In the report we describe our model for pandemic modeling, apply this model to COVID-19 data for New York City (NYC), assess model sensitivities to different inputs and parameters and , finally, propagate the model forward under different conditions to assess the effects of mitigation and associated timing. Finally, our approach will help understand the role of asymptomatic cases, and could be extended to elucidate the role of recovered individuals in the second round of the infection, which is currently being ignored.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lab on a Chip
A small, consumable-free, low-power, ultra-high-speed comprehensive GC×GC system consisting of microfabricated columns, nanoelectromechanical system (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator is demonstrated. The separation of a highly polar 29-component mixture covering a boiling point range of 46 to 253 °C on a pair of microfabricated columns using a Staiger valve manifold in less than 7 seconds, and just over 4 seconds after the ensemble holdup time is demonstrated with a downstream FID. The analysis time of the second dimension was 160 ms, and peak widths in the second dimension range from 10-60 ms. A peak capacity of just over 300 was calculated for a separation of just over 6 s. Data from a continuous operation testing over 40 days and 20000 runs of the GC×GC columns with the NEMS resonators using a 4-component test set is presented. The GC×GC-NEMS resonator system generated second-dimension peak widths as narrow as 8 ms with no discernable peak distortion due to under-sampling from the detector.
Applied Physics Letters
Abstract not provided.
Applied Physics Letters
We introduce a silicon metal-oxide-semiconductor quantum dot architecture based on a single polysilicon gate stack. The elementary structure consists of two enhancement gates separated spatially by a gap, one gate forming a reservoir and the other a quantum dot. We demonstrate that, in three devices based on two different versions of this elementary structure, a wide range of tunnel rates is attainable while maintaining single-electron occupation. A characteristic change in the slope of the charge transitions as a function of the reservoir gate voltage, attributed to screening from charges in the reservoir, is observed in all devices and is expected to play a role in the sizable tuning orthogonality of the split enhancement gate structure. The all-silicon process is expected to minimize strain gradients from electrode thermal mismatch, while the single gate layer should avoid issues related to overlayers (e.g., additional dielectric charge noise) and help improve the yield. Finally, reservoir gate control of the tunnel barrier has implications for initialization, manipulation, and readout schemes in multi-quantum dot architectures.
Abstract not provided.
Analytical Sciences
We describe for the first time hydrogen bonded acid (HBA) polymer, poly[methyl[3-(2-hydroxyl, 4,6-bistrifluoromethyl)- phenyl]propylsiloxane], (DKAP), as stationary phase for gas chromatography (μGC) of organophosphate (OP), chemical warfare agent (CWA) surrogates, dimethylmethylphosphonate (DMMP), diisopropylmethylphosphonate (DIMP), diethylmethylphosphonate (DEMP), and trimethylphosphate (TMP), with high selectivity. Absorption of OPs to DKAP was one-to-several orders of magnitude higher relative to commercial polar, mid-polar, and nonpolar stationary phases. We also present for the first-time thermodynamic studies on the absorption of OP vapors and quantitative binding energy data for interactions with various stationary phases. These data help to identify the best pair of hetero-polar columns for a two-dimensional GC system, employing a nonpolar stationary phase as GC1 and DKAP as the GC2 stationary phase, for selective and rapid field detection of CWAs.
Nature Communications
The silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin-orbit (SO) effects. Here we advantageously use interface-SO coupling for a critical control axis in a double-quantum-dot singlet-triplet qubit. The magnetic fieldorientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface-SO contributions. The resulting all-electrical, two-Axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, T2m, of 1.6 ?s is consistent with 99.95% 28Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-Axis qubit control, while not increasing noise relative to other material choices.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.