Publications

15 Results

Search results

Jump to search filters

ULTRA-HIGH-G BALLISTIC IMPACT INTO WATER TARGETS

Proceedings of the 16th Hypervelocity Impact Symposium, HVIS 2022

Wilson, Natasha; White, Caleb; Chen, Alex; Curtis, Shane K.; Lifke, Donald L.

Creation of a Sandia internally developed, shock-hardened Recoverable Data Recorder (RDR) necessitated experimentation by ballistically-firing the device into water targets at velocities up to 5,000 ft/s. The resultant mechanical environments were very severe—routinely achieving peak accelerations in excess of 200 kG and changes in pseudo-velocity greater than 38,000 inch/s. High-quality projectile deceleration datasets were obtained though high-speed imaging during the impact events. The datasets were then used to calibrate and validate computational models in both CTH and EPIC. Hydrodynamic stability in these environments was confirmed to differ from aerodynamic stability; projectile stability is maintained through a phenomenon known as “tail-slapping” or impingement of the rear of the projectile on the cavitation vapor-water interface which envelopes the projectile. As the projectile slows the predominate forces undergo a transition which is outside the codes’ capabilities to calculate accurately, however, CTH and EPIC both predict the projectile trajectory well in the initial hypervelocity regime. Stable projectile designs and the achievable acceleration space are explored through a large parameter sweep of CTH simulations. Front face chamfer angle has the largest influence on stability with low angles being more stable.

More Details

ULTRA-HIGH-G BALLISTIC IMPACT INTO WATER TARGETS

Proceedings of the 16th Hypervelocity Impact Symposium, HVIS 2022

Wilson, Natasha; White, Caleb; Chen, Alex; Curtis, Shane K.; Lifke, Donald L.

Creation of a Sandia internally developed, shock-hardened Recoverable Data Recorder (RDR) necessitated experimentation by ballistically-firing the device into water targets at velocities up to 5,000 ft/s. The resultant mechanical environments were very severe—routinely achieving peak accelerations in excess of 200 kG and changes in pseudo-velocity greater than 38,000 inch/s. High-quality projectile deceleration datasets were obtained though high-speed imaging during the impact events. The datasets were then used to calibrate and validate computational models in both CTH and EPIC. Hydrodynamic stability in these environments was confirmed to differ from aerodynamic stability; projectile stability is maintained through a phenomenon known as “tail-slapping” or impingement of the rear of the projectile on the cavitation vapor-water interface which envelopes the projectile. As the projectile slows the predominate forces undergo a transition which is outside the codes’ capabilities to calculate accurately, however, CTH and EPIC both predict the projectile trajectory well in the initial hypervelocity regime. Stable projectile designs and the achievable acceleration space are explored through a large parameter sweep of CTH simulations. Front face chamfer angle has the largest influence on stability with low angles being more stable.

More Details
15 Results
15 Results