A technique is proposed for reproducing particle size distributions in three-dimensional simulations of the crushing and comminution of solid materials. The method is designed to produce realistic distributions over a wide range of loading conditions, especially for small fragments. In contrast to most existing methods, the new model does not explicitly treat the small-scale process of fracture. Instead, it uses measured fragment distributions from laboratory tests as the basic material property that is incorporated into the algorithm, providing a data-driven approach. The algorithm is implemented within a nonlocal peridynamic solver, which simulates the underlying continuum mechanics and contact interactions between fragments after they are formed. The technique is illustrated in reproducing fragmentation data from drop weight testing on sandstone samples.
Neural operators, which can act as implicit solution operators of hidden governing equations, have recently become popular tools for learning the responses of complex real-world physical systems. Nevertheless, most neural operator applications have thus far been data-driven and neglect the intrinsic preservation of fundamental physical laws in data. In this work, we introduce a novel integral neural operator architecture called the Peridynamic Neural Operator (PNO) that learns a nonlocal constitutive law from data. This neural operator provides a forward model in the form of state-based peridynamics, with objectivity and momentum balance laws automatically guaranteed. As applications, we demonstrate the expressivity and efficacy of our model in learning complex material behaviors from both synthetic and experimental data sets. We also compare the performances with baseline models that use predefined constitutive laws. We show that, owing to its ability to capture complex responses, our learned neural operator achieves improved accuracy and efficiency. Moreover, by preserving the essential physical laws within the neural network architecture, the PNO is robust in treating noisy data. The method shows generalizability to different domain configurations, external loadings, and discretizations.
You, Huaiqian Q.; Xu, Xiao; Yu, Yue; D'Elia, Marta; Foster, John; Silling, Stewart A.
Molecular dynamics (MD) has served as a powerful tool for designing materials with reduced reliance on laboratory testing. However, the use of MD directly to treat the deformation and failure of materials at the mesoscale is still largely beyond reach. In this work, we propose a learning framework to extract a peridynamics model as a mesoscale continuum surrogate from MD simulated material fracture data sets. Firstly, we develop a novel coarse-graining method, to automatically handle the material fracture and its corresponding discontinuities in the MD displacement data sets. Inspired by the weighted essentially non-oscillatory (WENO) scheme, the key idea lies at an adaptive procedure to automatically choose the locally smoothest stencil, then reconstruct the coarse-grained material displacement field as the piecewise smooth solutions containing discontinuities. Then, based on the coarse-grained MD data, a two-phase optimization-based learning approach is proposed to infer the optimal peridynamics model with damage criterion. In the first phase, we identify the optimal nonlocal kernel function from the data sets without material damage to capture the material stiffness properties. Then, in the second phase, the material damage criterion is learnt as a smoothed step function from the data with fractures. As a result, a peridynamics surrogate is obtained. As a continuum model, our peridynamics surrogate model can be employed in further prediction tasks with different grid resolutions from training, and hence allows for substantial reductions in computational cost compared with MD. We illustrate the efficacy of the proposed approach with several numerical tests for the dynamic crack propagation problem in a single-layer graphene. Our tests show that the proposed data-driven model is robust and generalizable, in the sense that it is capable of modeling the initialization and growth of fractures under discretization and loading settings that are different from the ones used during training.
An ordinary state-based peridynamic material model is proposed for single-sheet graphene. The model is calibrated using coarse-grained molecular dynamics simulations. The coarse-graining method allows the dependence of bond force on bond length to be determined, including the horizon. The peridynamic model allows the horizon to be rescaled, providing a multiscale capability and allowing for substantial reductions in computational cost compared with molecular dynamics. The calibrated peridynamic model is compared to experimental data on the deflection and perforation of a graphene sheet by an atomic force microscope probe.
Neural operators [1–5] have recently become popular tools for designing solution maps between function spaces in the form of neural networks. Differently from classical scientific machine learning approaches that learn parameters of a known partial differential equation (PDE) for a single instance of the input parameters at a fixed resolution, neural operators approximate the solution map of a family of PDEs [6,7]. Despite their success, the uses of neural operators are so far restricted to relatively shallow neural networks and confined to learning hidden governing laws. In this work, we propose a novel nonlocal neural operator, which we refer to as nonlocal kernel network (NKN), that is resolution independent, characterized by deep neural networks, and capable of handling a variety of tasks such as learning governing equations and classifying images. Our NKN stems from the interpretation of the neural network as a discrete nonlocal diffusion reaction equation that, in the limit of infinite layers, is equivalent to a parabolic nonlocal equation, whose stability is analyzed via nonlocal vector calculus. The resemblance with integral forms of neural operators allows NKNs to capture long-range dependencies in the feature space, while the continuous treatment of node-to-node interactions makes NKNs resolution independent. The resemblance with neural ODEs, reinterpreted in a nonlocal sense, and the stable network dynamics between layers allow for generalization of NKN's optimal parameters from shallow to deep networks. This fact enables the use of shallow-to-deep initialization techniques [8]. Our tests show that NKNs outperform baseline methods in both learning governing equations and image classification tasks and generalize well to different resolutions and depths.
Additive manufactured Ti-5Al-5V-5Mo-3Cr (Ti-5553) is being considered as an AM repair material for engineering applications because of its superior strength properties compared to other titanium alloys. Here, we describe the failure mechanisms observed through computed tomography, electron backscatter diffraction (EBSD), and scanning electron microscopy (SEM) of spall damage as a result of tensile failure in as-built and annealed Ti-5553. We also investigate the phase stability in native powder, as-built and annealed Ti-5553 through diamond anvil cell (DAC) and ramp compression experiments. We then explore the effect of tensile loading on a sample containing an interface between a Ti-6Al-V4 (Ti-64) baseplate and additively manufactured Ti-5553 layer. Post-mortem materials characterization showed spallation occurred in regions of initial porosity and the interface provides a nucleation site for spall damage below the spall strength of Ti-5553. Preliminary peridynamics modeling of the dynamic experiments is described. Finally, we discuss further development of Stochastic Parallel PARticle Kinteic Simulator (SPPARKS) Monte Carlo (MC) capabilities to include the integration of alpha (α)-phase and microstructural simulations for this multiphase titanium alloy.
Nonlocal models provide a much-needed predictive capability for important Sandia mission applications, ranging from fracture mechanics for nuclear components to subsurface flow for nuclear waste disposal, where traditional partial differential equations (PDEs) models fail to capture effects due to long-range forces at the microscale and mesoscale. However, utilization of this capability is seriously compromised by the lack of a rigorous nonlocal interface theory, required for both application and efficient solution of nonlocal models. To unlock the full potential of nonlocal modeling we developed a mathematically rigorous and physically consistent interface theory and demonstrate its scope in mission-relevant exemplar problems.
Rezaul Karim, Mohammad; Narasimhachary, Santosh; Radaelli, Francesco; Amann, Christian; Dayal, Kaushik; Silling, Stewart A.; Germann, Timothy C.
We present a computational study and framework that allows us to study and understand the crack nucleation process from forging flaws. Forging flaws may be present in large steel rotor components commonly used for rotating power generation equipment including gas turbines, electrical generators, and steam turbines. The service life of these components is often limited by crack nucleation and subsequent growth from such forging flaws, which frequently exhibit themselves as non-metallic oxide inclusions. The fatigue crack growth process can be described by established engineering fracture mechanics methods. However, the initial crack nucleation process from a forging flaw is challenging for traditional engineering methods to quantify as it depends on the details of the flaw, including flaw morphology. We adopt the peridynamics method to describe and study this crack nucleation process. For a specific industrial gas turbine rotor steel, we present how we integrate and fit commonly known base material property data such as elastic properties, yield strength, and S-N curves, as well as fatigue crack growth data into a peridynamic model. The obtained model is then utilized in a series of high-performance two-dimensional peridynamic simulations to study the crack nucleation process from forging flaws for ambient and elevated temperatures in a rectangular simulation cell specimen. The simulations reveal an initial local nucleation at multiple small oxide inclusions followed by micro-crack propagation, arrest, coalescence, and eventual emergence of a dominant micro-crack that governs the crack nucleation process. The dependence on temperature and density of oxide inclusions of both the details of the microscopic processes and cycles to crack nucleation is also observed. The results are compared with fatigue experiments performed with specimens containing forging flaws of the same rotor steel.