Publications

Results 7601–7800 of 99,299

Search results

Jump to search filters

aphBO-2GP-3B: a budgeted asynchronous parallel multi-acquisition functions for constrained Bayesian optimization on high-performing computing architecture

Structural and Multidisciplinary Optimization

Foulk, James W.; Wildey, Timothy; Furlan, John M.; Krishnan, Pagalthivarthi; Visintainer, Robert J.; Mccann, Scott

High-fidelity complex engineering simulations are often predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-performance cluster (HPC) architecture. Optimization problems associated with these applications is a challenging problem due to the high computational cost of the high-fidelity simulations. In this paper, an asynchronous parallel constrained Bayesian optimization method is proposed to efficiently solve the computationally expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantage of this method are three-fold. First, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the proposed method can handle both known and unknown constraints. Third, the proposed method samples several acquisition functions based on their rewards using a modified GP-Hedge scheme. The proposed framework is termed aphBO-2GP-3B, which means asynchronous parallel hedge Bayesian optimization with two Gaussian processes and three batches. The numerical performance of the proposed framework aphBO-2GP-3B is comprehensively benchmarked using 16 numerical examples, compared against other 6 parallel Bayesian optimization variants and 1 parallel Monte Carlo as a baseline, and demonstrated using two real-world high-fidelity expensive industrial applications. The first engineering application is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations.

More Details

Corynebacterium glutamicum as an Efficient Omnivorous Microbial Host for the Bioconversion of Lignocellulosic Biomass

Frontiers in Bioengineering and Biotechnology

Mhatre, Apurv; Shinde, Somnath; Jha, Amit K.; Rodriguez, Alberto; Wardak, Zohal; Jansen, Abigail; Gladden, John M.; George, Anthe G.; Varman, Arul M.; Davis, Ryan W.

Corynebacterium glutamicum has been successfully employed for the industrial production of amino acids and other bioproducts, partially due to its native ability to utilize a wide range of carbon substrates. We demonstrated C. glutamicum as an efficient microbial host for utilizing diverse carbon substrates present in biomass hydrolysates, such as glucose, arabinose, and xylose, in addition to its natural ability to assimilate lignin-derived aromatics. As a case study to demonstrate its bioproduction capabilities, L-lactate was chosen as the primary fermentation end product along with acetate and succinate. C. glutamicum was found to grow well in different aromatics (benzoic acid, cinnamic acid, vanillic acid, and p-coumaric acid) up to a concentration of 40 mM. Besides, 13C-fingerprinting confirmed that carbon from aromatics enter the primary metabolism via TCA cycle confirming the presence of β-ketoadipate pathway in C. glutamicum. 13C-fingerprinting in the presence of both glucose and aromatics also revealed coumarate to be the most preferred aromatic by C. glutamicum contributing 74 and 59% of its carbon for the synthesis of glutamate and aspartate respectively. 13C-fingerprinting also confirmed the activity of ortho-cleavage pathway, anaplerotic pathway, and cataplerotic pathways. Finally, the engineered C. glutamicum strain grew well in biomass hydrolysate containing pentose and hexose sugars and produced L-lactate at a concentration of 47.9 g/L and a yield of 0.639 g/g from sugars with simultaneous utilization of aromatics. Succinate and acetate co-products were produced at concentrations of 8.9 g/L and 3.2 g/L, respectively. Our findings open the door to valorize all the major carbon components of biomass hydrolysate by using C. glutamicum as a microbial host for biomanufacturing.

More Details

An Accurate, Error-Tolerant, and Energy-Efficient Neural Network Inference Engine Based on SONOS Analog Memory

IEEE Transactions on Circuits and Systems I: Regular Papers

Xiao, Tianyao P.; Feinberg, Benjamin; Bennett, Christopher; Agrawal, Vineet; Saxena, Prashant; Prabhakar, Venkatraman; Ramkumar, Krishnaswamy; Medu, Harsha; Raghavan, Vijay; Chettuvetty, Ramesh; Agarwal, Sapan; Marinella, Matthew

We demonstrate SONOS (silicon-oxide-nitride-oxide-silicon) analog memory arrays that are optimized for neural network inference. The devices are fabricated in a 40nm process and operated in the subthreshold regime for in-memory matrix multiplication. Subthreshold operation enables low conductances to be implemented with low error, which matches the typical weight distribution of neural networks, which is heavily skewed toward near-zero values. This leads to high accuracy in the presence of programming errors and process variations. We simulate the end-To-end neural network inference accuracy, accounting for the measured programming error, read noise, and retention loss in a fabricated SONOS array. Evaluated on the ImageNet dataset using ResNet50, the accuracy using a SONOS system is within 2.16% of floating-point accuracy without any retraining. The unique error properties and high On/Off ratio of the SONOS device allow scaling to large arrays without bit slicing, and enable an inference architecture that achieves 20 TOPS/W on ResNet50, a > 10× gain in energy efficiency over state-of-The-Art digital and analog inference accelerators.

More Details

Molecular Dynamics Simulation and Cryo-Electron Microscopy Investigation of AOT Surfactant Structure at the Hydrated Mica Surface

Minerals

Long, Daniel M.; Greathouse, Jeffery A.; Xu, Guangping; Jungjohann, Katherine L.

Structural properties of the anionic surfactant dioctyl sodium sulfosuccinate (AOT or Aerosol-OT) adsorbed on the mica surface were investigated by molecular dynamics simulation, including the effect of surface loading in the presence of monovalent and divalent cations. The simulations confirmed recent neutron reflectivity experiments that revealed the binding of anionic surfactant to the negatively charged surface via adsorbed cations. At low loading, cylindrical micelles formed on the surface, with sulfate head groups bound to the surface by water molecules or adsorbed cations. Cation bridging was observed in the presence of weakly hydrating monovalent cations, while sulfate groups interacted with strongly hydrating divalent cations through water bridges. The adsorbed micelle structure was confirmed experimentally with cryogenic electronic microscopy, which revealed micelles approximately 2 nm in diameter at the basal surface. At higher AOT loading, the simulations reveal adsorbed bilayers with similar surface binding mechanisms. Adsorbed micelles were slightly thicker (2.2–3.0 nm) than the corresponding bilayers (2.0–2.4 nm). Upon heating the low loading systems from 300 K to 350 K, the adsorbed micelles transformed to a more planar configuration resembling bilayers. The driving force for this transition is an increase in the number of sulfate head groups interacting directly with adsorbed cations.

More Details

Two-qubit silicon quantum processor with operation fidelity exceeding 99%

Science Advances

Nielsen, Erik N.; Mills, Adam R.; Guinn, Charles R.; Gullans, Michael J.; Sigillito, Anthony J.; Feldman, Mayer M.; Petta, Jason R.

Silicon spin qubits satisfy the necessary criteria for quantum information processing. However, a demonstration of high-fidelity state preparation and readout combined with high-fidelity single- and two-qubit gates, all of which must be present for quantum error correction, has been lacking. We use a two-qubit Si/SiGe quantum processor to demonstrate state preparation and readout with fidelity greater than 97%, combined with both singleand two-qubit control fidelities exceeding 99%. The operation of the quantum processor is quantitatively characterized using gate set tomography and randomized benchmarking. Our results highlight the potential of silicon spin qubits to become a dominant technology in the development of intermediate-scale quantum processors.

More Details

Quantitative Performance Assessment of Proxy Apps and Parents (Report for ECP Proxy App Project Milestone ADCD-504-28)

Cook, Jeanine; Aaziz, Omar R.; Chen, Si; Godoy, William; Powell, Amy J.; Watson, Gregory; Vaughan, Courtenay T.; Wildani, Avani

The ECP Proxy Application Project has an annual milestone to assess the state of ECP proxy applications and their role in the overall ECP ecosystem. Our FY22 March/April milestone (ADCD- 504-28) proposed to: Assess the fidelity of proxy applications compared to their respective parents in terms of kernel and I/O behavior, and predictability. Similarity techniques will be applied for quantitative comparison of proxy/parent kernel behavior. MACSio evaluation will continue and support for OpenPMD backends will be explored. The execution time predictability of proxy apps with respect to their parents will be explored through a carefully designed scaling study and code comparisons. Note that in this FY, we also have quantitative assessment milestones that are due in September and are, therefore, not included in the description above or in this report. Another report on these deliverables will be generated and submitted upon completion of these milestones. To satisfy this milestone, the following specific tasks were completed: Study the ability of MACSio to represent I/O workloads of adaptive mesh codes. Re-define the performance counter groups for contemporary Intel and IBM platforms to better match specific hardware components and to better align across platforms (make cross-platform comparison more accurate). Perform cosine similarity study based on the new performance counter groups on the Intel and IBM P9 platforms. Perform detailed analysis of performance counter data to accurately average and align the data to maintain phases across all executions and develop methods to reduce the set of collected performance counters used in cosine similarity analysis. Apply a quantitative similarity comparison between proxy and parent CPU kernels. Perform scaling studies to understand the accuracy of predictability of the parent performance using its respective proxy application. This report presents highlights of these efforts.

More Details

HYSPLIT/MACCS Atmospheric Dispersion Model Technical Documentation and Benchmark Analysis

Clayton, Daniel J.; Bixler, Nathan E.; Compton, Keith L.

The nuclear accident consequence analysis code MACCS has traditionally modeled dispersion during downwind transport using a Gaussian plume segment model. MACCS is designed to estimate consequence measures such as air concentrations and ground depositions, radiological doses, and health and economic impacts on a statistical basis over the course of a year to produce annualaveraged output measures. The objective of this work is to supplement the Gaussian atmospheric transport and diffusion (ATD) model currently in MACCS with a new option using the HYSPLIT model. HYSPLIT/MACCS coupling has been implemented, with HYSPLIT as an alternative ATD option. The subsequent calculations in MACCS use the HYSPLIT-generated air concentration, and ground deposition values to calculate the same range of output quantities (dose, health effects, risks, etc.) that can be generated when using the MACCS Gaussian ATD model. Based on the results from the verification test cases, the implementation of the HYSPLIT/MACCS coupling is confirmed. This report contains technical details of the HYSPLIT/MACCS coupling and presents a benchmark analysis using the HYSPLIT/MACCS coupling system. The benchmark analysis, which involves running specific scenarios and sensitivity studies designed to examine how the results generated by the traditional MACCS Gaussian plume segment model compare to the new, higher fidelity HYSPLIT/MACCS modeling option, demonstrates the modeling results that can be obtained by using this new option. The comparisons provided herein can also help decision-makers evaluate the potential benefit of using results based on higher fidelity modeling with the additional computational burden needed to perform the calculations. Three sensitivity studies to investigate the potential impact of alternative modeling options, regarding 1) input meteorological data set, 2) method to estimate stability class, and 3) plume dispersion model for larger distances, on consequence results were also performed. The results of these analyses are provided and discussed in this report.

More Details

Response of a Pressurized Water Reactor Dashpot Region to Commercial Drying Cycles

Pulido, Ramon J.; Taconi, Anna M.; Foulk, James W.; Fasano, Raymond; Foulk, James W.; Baigas, Beau T.; Durbin, S.

The purpose of this report is to document updates to the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents testing updates for the Dashpot Drying Apparatus (DDA), an apparatus constructed at a reduced scale with multiple Pressurized Water Reactor (PWR) fuel rod surrogates and a single guide tube dashpot. This apparatus is fashioned from a truncated 5×5 section of a prototypic 17×17 PWR fuel skeleton and includes the lowest segment of a single guide tube, often referred to as the dashpot region. The guide tube in this assembly is open and allows for insertion of a poison rod (neutron absorber) surrogate.

More Details

In situ detection of RF breakdown on microfabricated surface ion traps

Journal of Applied Physics

Wilson, Joshua; Tilles, Julia N.; Haltli, Raymond A.; Ou, Eric; Blain, Matthew G.; Clark, Susan M.; Revelle, Melissa C.

We report microfabricated surface ion traps are a principal component of many ion-based quantum information science platforms. The operational parameters of these devices are pushed to the edge of their physical capabilities as the experiments strive for increasing performance. When the applied radio-frequency (RF) voltage is increased excessively, the devices can experience damaging electric discharge events known as RF breakdown. We introduce two novel techniques for in situ detection of RF breakdown, which we implemented while characterizing the breakdown threshold of surface ion traps produced at Sandia National Laboratories. In these traps, breakdown did not always occur immediately after increasing the RF voltage, but often minutes or even hours later. This result is surprising in the context of the suggested mechanisms for RF breakdown in vacuum. Additionally, the extent of visible damage caused by breakdown events increased with the applied voltage. To minimize the probability for damage when RF power is first applied to a device, our results strongly suggest that the voltage should be ramped up over the course of several hours and monitored for breakdown.

More Details

Hazardous Waste Management Progress Report [SB14]

Harris, Janet

The Department of Energy (DOE) is the owner and part operator of multiple facilities in Northern California. The facilities include those located at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories/California (SNL/CA) and SLAC National Accelerator Laboratory (SLAC) among other sites. Through their operations, the facilities generate hazardous waste and, thereby, are subject to the requirements of Chapter 31 of the Title 22 California Code of Regulations, Waste Minimization. The Northern California sites are primarily research and development facilities in the areas relating to national security, high-energy physics, engineering, bioscience and environmental health and safety disciplines. As mentioned above these DOE facilities are primarily research and development facilities. The hazardous wastes generated may be associated with operations that range in size from small, bench scale R&D to major maintenance and operations waste streams. Therefore, even though this document breaks down the waste streams based on California Waste Codes (CWC), the quantities of waste within one waste code category could be from many different locations and dissimilar processes. Because of the nature of the work at the sites, it is not economically feasible to try to implement source reduction measures for every process that generates a portion of the waste stream. This document identifies the processes that generate the major portion of the waste within an identified major waste stream and reports on progress made toward source reduction. In accomplishing the mission, it is DOE’s goal to eliminate waste generation and emissions giving priority to those that may present the greatest risk to human health and the environment.

More Details

A method for generating moving, orthogonal, area preserving polygonal meshes

Journal of Computational Physics

Perot, J.B.; Chartrand, Christopher C.

A new method for generating locally orthogonal polygonal meshes from a set of generator points is presented in which polygon areas are a constraint. The area constraint property is particularly useful for particle methods where moving polygons track a discrete portion of material. Because Voronoi polygon meshes have some very attractive mathematical and numerical properties for numerical computation, a generalization of Voronoi polygon meshes was formulated that enforces a polygon area constraint. Area constrained moving polygonal meshes allow one to develop hybrid particle-mesh numerical methods that display some of the most attractive features of each approach. It is shown that this mesh construction method can continuously reconnect a moving, unstructured polygonal mesh in a pseudo-Lagrangian fashion without change in cell area/volume, and the method's ability to simulate various physical scenarios is shown. The advantages are identified for incompressible fluid flow calculations, with demonstration cases that include material discontinuities of all three phases of matter and large density jumps.

More Details

Inverse Methods - Users Manual 5.6

Walsh, Timothy; Akcelik, Volkan; Aquino, Wilkins; Mccormick, Cameron; Sanders, Clay; Treweek, Benjamin; Kurzawski, John C.; Smith, Chandler

The inverse methods team provides a set of tools for solving inverse problems in structural dynamics and thermal physics, and also sensor placement optimization via Optimal Experimental Design (OED). These methods are used for designing experiments, model calibration, and verfication/validation analysis of weapons systems. This document provides a user's guide to the input for the three apps that are supported for these methods. Details of input specifications, output options, and optimization parameters are included.

More Details

Calibrating the SPECTACULAR constitutive model using legacy Sandia data for two filled epoxy systems: 828/CTBN/DEA/GMB and 828/DEA/GMB

Cundiff, K.N.

The SPECTACULAR model is a development extension of the Simplified Potential Energy Clock (SPEC) model. Both models are nonlinear viscoelastic constitutive models used to predict a wide range of time-dependent behaviors in epoxies and other glass-forming materials. This report documents the procedures used to generate SPECTACULAR calibrations for two particulate-filled epoxy systems, 828/CTBN/DEA/GMB and 828/DEA/GMB. No previous SPECTACULAR or SPEC calibration exists for 828/CTBN/DEA/GMB, while a legacy SPEC calibration exists for 828/DEA/GMB. To generate the SPECTACULAR calibrations, a step-by-step procedure was executed to determine parameters in groups with minimal coupling between parameter groups. This procedure has often been deployed to calibrate SPEC, therefore the resulting SPECTACULAR calibration is backwards compatible with SPEC (i.e. none of the extensions specific to SPECTACULAR are used). The calibration procedure used legacy Sandia experimental data stored on the Polymer Properties Database website. The experiments used for calibration included shear master curves, isofrequency temperature sweeps under oscillatory shear, the bulk modulus at room temperature, the thermal strain during a temperature sweep, and compression through yield at multiple temperatures below the glass transition temperature. Overall, the calibrated models fit the experimental data remarkably well. However, the glassy shear modulus varies depending on the experiment used to calibrate it. For instance, the shear master curve, isofrequency temperature sweep under oscillatory shear, and the Young's modulus in glassy compression yield values for the glassy shear modulus at the reference temperature that vary by as much as 15 %. Also, for 828/CTBN/DEA/GMB, the temperature dependence of the glassy shear modulus when fit to the Young's modulus at different temperatures is approximately four times larger than when it is determined from the isofrequency temperature sweep under oscillatory shear. For 828/DEA/GMB, the temperature dependence of the shear modulus determined from the isofrequency temperature sweep under oscillatory shear accurately predicts the Young's modulus at different temperatures. When choosing values for the shear modulus, fitting the glassy compression data was prioritized. The new and legacy calibrations for 828/DEA/GMB are similar and appear to have been calibrated from the same data. However, the new calibration improves the fit to the thermal strain data. In addition to the standard calibrations, development calibrations were produced that take advantage of development features of SPECTACULAR , including an updated equilibrium Helmholtz free energy that eliminates undesirable behavior found in previous work. In addition to the previously mentioned experimental data, the development calibrations require data for the heat capacity during a stress-free temperature sweep to calibrate thermal terms.

More Details

Best practices for photovoltaic performance loss rate calculations

Progress in Energy

Lindig, Sascha; Theristis, Marios; Moser, David

The performance loss rate (PLR) is a vital parameter for the time-dependent assessment of photovoltaic (PV) system performance and health state. Although this metric can be calculated in a relatively straightforward manner, it is challenging to achieve accurate and reproducible results with low uncertainty. Furthermore, the temporal evolution of PV system performance is usually nonlinear, but in many cases a linear evaluation is preferred as it simplifies the assessment and it is easier to evaluate. As such, the search for a robust and reproducible calculation methodology providing reliable linear PLR values across different types of systems and conditions has been the focus of many research activities in recent years. In this paper, the determination of PV system PLR using different pipelines and approaches is critically evaluated and recommendations for best practices are given. As nonlinear PLR assessments are fairly new, there is no consent on how to calculate reliable values. Several promising nonlinear approaches have been developed recently and are presented as tools to evaluate the PV system performance in great detail. Furthermore, challenges are discussed with respect to the PLR calculation but also opportunities for differentiating individual performance losses from a generic PLR value having the potential of enabling actionable insights for maintenance.

More Details

Noncolinear optical parametric oscillator for broadband nanosecond pulse-burst CARS diagnostics in gases

Optics Letters

Jans, Elijah R.; Armstrong, Darrell J.; Smith, Arlee V.; Kearney, Sean P.

Demonstration of broadband nanosecond coherent anti-Stokes Raman scattering (CARS) using a burst-mode-pumped noncolinear optical parametric oscillator (NOPO) has been achieved at a pulse repetition rate of 40 kHz. The NOPO is pumped with the 355-nm output of a burst-mode Nd:YAG laser at 50 mJ/pulse for 45 pulses and produces an output centered near 607 nm, with a bandwidth of 370 cm−1 at energies of 5 mJ/pulse. A planar BOXCARS phase matching scheme uses the broadband NOPO output as the Stokes beam and the narrowband 532-nm burst-mode output for the two CARS pump beams for single-laser-shot nitrogen thermometry in near adiabatic H2/air flames at temperatures up to 2200 K.

More Details

3D optical diagnostics for explosively driven deformation and fragmentation

International Journal of Impact Engineering

Guildenbecher, Daniel; Jones, E.M.C.; Hall, Elise; Reu, P.L.; Miller, Timothy J.; Perez, Francisco; Thompson, Andrew D.; Ball, James P.

High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.

More Details

Evaluation of Joint Cyber/Safety Risk in Nuclear Power Systems

Clark, Andrew; James, Jacob; Mohmand, Jamal A.; Lamb, Christopher; Maccarone, Lee; Rowland, Mike

This report presents an analysis of the Emergency Core Cooling System (ECCS) for a generic Boiling Water Reactor (BWR)-4 NPP. The Electric Power Research Institute (EPRI) developed Hazards and Consequences Analysis for Digital Systems (HAZCADS) process is applied to the ECCS and its subsystems to identify unsafe control actions (UCAs) which act as possible cyber events of concern. The analysis is performed for two design basis events: Small-break Loss of Coolant Accident (SLOCA) and general transients (TRANS), such as unintended reactor trip. In previous work, HAZCADS UCAs were combined with other cyber-attack analysis to develop a risk-informed approach; however, this was for a single system. This report explores advanced systems engineering modeling approaches to model the interactions between digital assets across multiple systems which may be targeted by cyber adversaries. The complex and interdependent design of digital systems has the potential to introduce emergent cyber properties that are generally not covered by hazard analyses nor formal nuclear Probabilistic Risk Assessment (PRA). The R&D and supporting analysis presented here explores approaches to predict and manage how interdependent system properties effect risk. To show the potential impact of a successful cyber-attack to formal PRA event tree probabilities, HAZCADS analysis was also used. HAZCADS was also used to model the automatic depressurization system (ADS) automatic actuation. This analysis extended to an integrated system analysis for common-cause failure (CCF). In this aspect, the HAZCADS analysis continued by analyzing plant design details for system connectivity in support of critical plant functions. A dependency matrix was developed to depict the integrated functionality of the interconnected systems. Areas of potential CCF are indicated. Future work could include adversary attack development to show how CCF could be caused, resulting in PRA events. Across the multiple systems that comprise the ECCS, the analysis shows that the change in such probabilities was very different between systems. This indicates that some systems have a larger potential risk impact from successful cyber-attack or digital failure, which indicates a need for these systems to have a higher priority for design and defensive measures. Furthermore, we were able to establish that a risk analysis using any arbitrary threat model establishes an ordering of components with regard to cyber-risk. This ordering can be used to influence the overall system design with an eye to lowering risk, or as a way to understand real-time risk to operational systems based on a current threat landscape. Expert knowledge of both the analysis process and the system being analyzed is required to perform a HAZCADS analysis. The need for a tiered risk analysis is demonstrated by the results of this report.

More Details

Electroactive ZnO: Mechanisms, Conductivity, and Advances in Zn Alkaline Battery Cycling

Advanced Energy Materials

Hawkins, Brendan E.; Turney, Damon E.; Messinger, Robert J.; Kiss, Andrew M.; Yadav, Gautam G.; Banerjee, Sanjoy; Lambert, Timothy N.

Zinc oxide is of great interest for advanced energy devices because of its low cost, wide direct bandgap, non-toxicity, and facile electrochemistry. In zinc alkaline batteries, ZnO plays a critical role in electrode passivation, a process that hinders commercialization and remains poorly understood. Here, novel observations of an electroactive type of ZnO formed in Zn-metal alkaline electrodes are disclosed. The electrical conductivity of battery-formed ZnO is measured and found to vary by factors of up to 104, which provides a first-principles-based understanding of Zn passivation in industrial alkaline batteries. Simultaneous with this conductivity change, protons are inserted into the crystal structure and electrons are inserted into the conduction band in quantities up to ≈1020 cm−3 and ≈1 mAh gZnO−1. Electron insertion causes blue electrochromic coloration with efficiencies and rates competitive with leading electrochromic materials. The electroactivity of ZnO is evidently enabled by rapid crystal growth, which forms defects that complex with inserted cations, charge-balanced by the increase of conduction band electrons. This property distinguishes electroactive ZnO from inactive classical ZnO. Knowledge of this phenomenon is applied to improve cycling performance of industrial-design electrodes at 50% zinc utilization and the authors propose other uses for ZnO such as electrochromic devices.

More Details

What is Water's Role in a Carbon Neutral Future? A Summary of Findings from a Webinar Series

Gunda, Thushara; Ferencz, Stephen; Hora, Priya I.; Kuzio, Stephanie; Foulk, James W.

There has been ever-growing interest and engagement regarding net-zero and carbon neutrality goals, with many nations committing to steep emissions reductions by mid-century. Although water plays critical roles in various sectors, there has been a distinct gap in discussions to date about the role of water in the transition to a carbon neutral future. To address this need, a webinar was convened in April 2022 to gain insights into how water can support or influence active strategies for addressing emissions activities across energy, industrial, and carbon sectors. The webinar presentations and discussions highlighted various nuances of direct and indirect water use both within and across technology sectors (Figure ES-1). For example, hydrogen and concrete production, water for mining, and inland waterways transportation are all heavily influenced by the energy sources used (fossil fuels vs. renewable sources) as well as local resource availabilities. Algal biomass, on the other hand, can be produced across diverse geographies (terrestrial to sea) in a range of source water qualities, including wastewater and could also support pollution remediation through nutrient and metals recovery. Finally, water also influences carbon dynamics and cycling within natural systems across terrestrial, aquatic, and geologic systems. These dynamics underscore not only the critical role of water within the energy-water nexus, but also the extension into the energy-watercarbon nexus.

More Details

Tomographic imaging of atmospheric pressure plasma on complex surfaces

Bentz, Brian Z.

Many plasma types and behaviors such as streamer, arcs, cathode spots, anode spots, ionization waves, and magnetic field interactions create non-symmetric, fully 3D plasma structures. The plasma distribution in 3D space is heavily influenced by complex surfaces and the coupling interactions between plasma properties and the interfacing material properties. For example, ionization waves propagate in directions where ionization rates are highest, leading to complex configurations that are not fully understood or well characterized. Recent advances in laser diagnostics and models have been able to investigate well-controlled idealized plasmas in 2D fashion, but the complex structure in actual plasmas requires a technique than can provide a more complete 3D picture. However, 3D plasma diagnostics do not currently exist. To address this limitation, this activity will leverage available equipment to build a new tomographic optical imaging capability and advance the state-of-the-art in plasma diagnostics to investigate 3D phenomena on complex surfaces.

More Details

Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome

Cell

Patel, Jaymin R.; Oh, Joonseok; Crawford, Jason M.; Isaacs, Farren J.

Small molecules encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnology. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, in this work, we describe a computational-experimental technology to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-negative and -positive bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites—tyrocitabines—from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of “Amadori synthases” and “abortive” tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities.

More Details

Topographically Scattered Infrasound Waves Observed on Microbarometer Arrays in the Lower Stratosphere

Earth and Space Science

Bird, E.J.; Lees, J.M.; Bowman, Daniel

When an acoustic wave strikes a topographic feature, some of its energy is scattered. Sensors on the ground cannot capture these scattered signals when they propagate at high angles. We report observations of upwardly-scattered acoustic waves prior to refraction back to the ground, intercepting them with a set of balloon-borne infrasound microbarometers in the lower stratosphere over northern Sweden. We show that these scattered waves generate a coda whose presence can be related to topography beneath balloons and low-altitude acoustic ducts. The inclination of the coda signals changes systematically with time, as expected from waves arriving from scatterers successively closer to receivers. The codas are present when a temperature inversion channels infrasound from a set of ground chemical explosions along the ground, but are absent following the inversion's dissipation. Since scattering partitions energy away from the main arrival, these observations imply a mechanism of amplitude loss that had previously been inaccessible to measurement. As such, these data and results allow for a better comprehension of interactions between atmospheric infrasound propagation and the solid earth.

More Details

Self-Induced Curvature in an Internally Loaded Peridynamic Fiber

Silling, Stewart

A straight fiber with nonlocal forces that are independent of bond strain is considered. These internal loads can either stabilize or destabilize the straight configuration. Transverse waves with long wavelength have unstable dispersion properties for certain combinations of nonlocal kernels and internal loads. When these unstable waves occur, deformation of the straight fiber into a circular arc can lower its potential energy in equilibrium. The equilibrium value of the radius of curvature is computed explicitly.

More Details

Remote Monitoring Systems/Remote Data Transmission for International Nuclear Safeguards

Smartt, Heidi A.

The use of remotely transmitted data from a nuclear facility under international nuclear safeguards to an inspectorate headquarters has been rapidly growing since inception as its value in reducing inspection effort and cost is demonstrated. There are opportunities for further growth moving forward including (1) the number of spent fuel casks in dry interim storage are increasing, leading to strain on inspection resources and potentially increased radiation exposure to inspectors, (2) the frequency of encapsulating spent nuclear fuel for final disposal in geological repositories occurs at a rate that may lead to the need for on-site inspectors unless systems can be developed to remotely transmit data, and (3) new facility types such as small modular reactors may rely heavily on remotely transmitted data due in part to remote locations of operation and mobility. Challenges need to be addressed too and include (1) hesitancy to implement remote data transmission by states, (2) data collection, transmission, security, and analysis, and (3) reliable power and communications. This report examines the evolution, equipment deployed, status, and opportunities/challenges of remote data transmission moving forward.

More Details

Health Management Clinic Report FY18

Grassham, Johanna

The Health Management Clinic (HMC) is a worksite specialty clinic designed to provide an exceptional level of health care for Sandia employees with diabetes, cholesterol and blood pressure disorders, and for those employees that need help with smoking cessation, depression, anxiety, sleep disorders, or weight management. With a unified commitment to the best care practices available, the HMC is Sandia’s interface to workplace healthcare and health plan services. The HMC provides Sandia employees access to onsite screenings, health care exams, preventative health education, disease management education, care management, periodic laboratory testing, immunizations, podiatry services, and behavioral, fitness, and nutrition counseling/education. Our multidisciplinary team of health professionals consists of physicians, nurses, medical assistants, certified diabetes educators, dietitians, health educators, and exercise specialists. Services offered by the Health Management clinic have been designed to reduce further complications from disease states and promote healthy behavior changes for Sandia employees.

More Details
Results 7601–7800 of 99,299
Results 7601–7800 of 99,299