Publications

Results 1–25 of 374

Search results

Jump to search filters

Single Event Upset and Total Ionizing Dose Response of 12LP FinFET Digital Circuits

Spear, Matthew; Wallace, Trace; Wilson, Donald; Solano, Jose; Irumva, Gedeon; Esqueda, Ivan S.; Barnaby, Hugh J.; Clark, Lawrence T.; Brunhaver, John; Turowski, Marek; Mikkola, Esko; Hughart, David R.; Young, Joshua M.; Manuel, Jack E.; Agarwal, Sapan A.; Vaandrager, Bastiaan L.; Vizkelethy, Gyorgy V.; Gutierrez, Amos; Trippe, James M.; King, Michael P.; Bielejec, Edward S.; Marinella, Matthew J.

Abstract not provided.

Single Event Upset and Total Ionizing Dose Response of 12LP FinFET Digital Circuits

Spear, Matthew; Wallace, Trace; Wilson, Donald; Solano, Jose; Irumva, Gedeon; Esqueda, Ivan S.; Barnaby, Hugh J.; Clark, Lawrence T.; Brunhaver, John; Turowski, Marek; Mikkola, Esko; Hughart, David R.; Young, Joshua M.; Manuel, Jack E.; Agarwal, Sapan A.; Vaandrager, Bastiaan L.; Vizkelethy, Gyorgy V.; King, Michael P.; Marinella, Matthew J.

Abstract not provided.

Physical Compact Model for Three-Terminal SONOS Synaptic Circuit Element

Advanced Intelligent Systems

Laros, James H.; Talin, A.A.; Marinella, Matthew J.; Williams, R.S.

A well-posed physics-based compact model for a three-terminal silicon–oxide–nitride–oxide–silicon (SONOS) synaptic circuit element is presented for use by neuromorphic circuit/system engineers. Based on technology computer aided design (TCAD) simulations of a SONOS device, the model contains a nonvolatile memristor with the state variable QM representing the memristor charge under the gate of the three-terminal element. By incorporating the exponential dependence of the memristance on QM and the applied bias V for the gate, the compact model agrees quantitatively with the results from TCAD simulations as well as experimental measurements for the drain current. The compact model is implemented through VerilogA in the circuit simulation package Cadence Spectre and reproduces the experimental training behavior for the source–drain conductance of a SONOS device after applying writing pulses ranging from –12 V to +11 V, with an accuracy higher than 90%.

More Details

CrossSim Inference Manual v2.0

Xiao, Tianyao X.; Bennett, Christopher H.; Feinberg, Benjamin F.; Marinella, Matthew J.; Agarwal, Sapan A.

Neural networks are largely based on matrix computations. During forward inference, the most heavily used compute kernel is the matrix-vector multiplication (MVM): $W \vec{x} $. Inference is a first frontier for the deployment of next-generation hardware for neural network applications, as it is more readily deployed in edge devices, such as mobile devices or embedded processors with size, weight, and power constraints. Inference is also easier to implement in analog systems than training, which has more stringent device requirements. The main processing kernel used during inference is the MVM.

More Details

An Accurate, Error-Tolerant, and Energy-Efficient Neural Network Inference Engine Based on SONOS Analog Memory

IEEE Transactions on Circuits and Systems I: Regular Papers

Xiao, Tianyao X.; Feinberg, Benjamin F.; Bennett, Christopher H.; Agrawal, Vineet; Saxena, Prashant; Prabhakar, Venkatraman; Ramkumar, Krishnaswamy; Medu, Harsha; Raghavan, Vijay; Chettuvetty, Ramesh; Agarwal, Sapan A.; Marinella, Matthew J.

We demonstrate SONOS (silicon-oxide-nitride-oxide-silicon) analog memory arrays that are optimized for neural network inference. The devices are fabricated in a 40nm process and operated in the subthreshold regime for in-memory matrix multiplication. Subthreshold operation enables low conductances to be implemented with low error, which matches the typical weight distribution of neural networks, which is heavily skewed toward near-zero values. This leads to high accuracy in the presence of programming errors and process variations. We simulate the end-To-end neural network inference accuracy, accounting for the measured programming error, read noise, and retention loss in a fabricated SONOS array. Evaluated on the ImageNet dataset using ResNet50, the accuracy using a SONOS system is within 2.16% of floating-point accuracy without any retraining. The unique error properties and high On/Off ratio of the SONOS device allow scaling to large arrays without bit slicing, and enable an inference architecture that achieves 20 TOPS/W on ResNet50, a > 10× gain in energy efficiency over state-of-The-Art digital and analog inference accelerators.

More Details

Single-Event Effects Induced by Heavy Ions in SONOS Charge Trapping Memory Arrays

IEEE Transactions on Nuclear Science

Xiao, Tianyao X.; Bennett, Christopher H.; Agarwal, Sapan A.; Hughart, David R.; Barnaby, Hugh J.; Puchner, Helmut; Talin, A.A.; Marinella, Matthew J.

We investigate the sensitivity of silicon-oxide-nitride-silicon-oxide (SONOS) charge trapping memory technology to heavy-ion induced single-event effects. Threshold voltage ( V_T ) statistics were collected across multiple test chips that contained in total 18 Mb of 40-nm SONOS memory arrays. The arrays were irradiated with Kr and Ar ion beams, and the changes in their V_T distributions were analyzed as a function of linear energy transfer (LET), beam fluence, and operating temperature. We observe that heavy ion irradiation induces a tail of disturbed devices in the 'program' state distribution, which has also been seen in the response of floating-gate (FG) flash cells. However, the V_T distribution of SONOS cells lacks a distinct secondary peak, which is generally attributed to direct ion strikes to the gate-stack of FG cells. This property, combined with the observed change in the V_T distribution with LET, suggests that SONOS cells are not particularly sensitive to direct ion strikes but cells in the proximity of an ion's absorption can still experience a V_T shift. These results shed new light on the physical mechanisms underlying the V_T shift induced by a single heavy ion in scaled charge trap memory.

More Details

Purely Spintronic Leaky Integrate-and-Fire Neurons

Proceedings - IEEE International Symposium on Circuits and Systems

Brigner, Wesley H.; Hassan, Naimul; Hu, Xuan; Bennett, Christopher H.; Garcia-Sanchez, Felipe; Marinella, Matthew J.; Incorvia, Jean A.C.; Friedman, Joseph S.

Neuromorphic computing promises revolutionary improvements over conventional systems for applications that process unstructured information. To fully realize this potential, neuromorphic systems should exploit the biomimetic behavior of emerging nanodevices. In particular, exceptional opportunities are provided by the non-volatility and analog capabilities of spintronic devices. While spintronic devices that emulate neurons have been previously proposed, they require complementary metal-oxide semiconductor (CMOS) technology to function. In turn, this significantly increases the power consumption, fabrication complexity, and device area of a single neuron. This work reviews three previously proposed CMOS-free spintronic neurons designed to resolve this issue.

More Details

Analog Neural Network Inference Accuracy in One-Selector One-Resistor Memory Arrays

Proceedings - 2022 IEEE International Conference on Rebooting Computing, ICRC 2022

Xiao, Tianyao X.; Bennett, Christopher H.; Wilson, Donald; Feinberg, Benjamin F.; Agarwal, Sapan A.; Marinella, Matthew J.

Non-volatile memory arrays require select devices to ensure accurate programming. The one-selector one-resistor (1S1R) array where a two-terminal nonlinear select device is placed in series with a resistive memory element is attractive due to its high-density data storage; however, the effect of the nonlinear select device on the accuracy of analog in-memory computing has not been explored. This work evaluates the impact of select and memory device properties on the results of analog matrix-vector multiplications. We integrate nonlinear circuit simulations into CrossSim and perform end-to-end neural network inference simulations to study how the select device affects the accuracy of neural network inference. We propose an adjustment to the input voltage that can effectively compensate for the electrical load of the select device. Our results show that for deep residual networks trained on CIFAR-10, a compensation that is uniform across all devices in the system can mitigate these effects over a wide range of values for the select device I-V steepness and memory device On/Off ratio. A realistic I-V curve steepness of 60 mV/dec can yield an accuracy on CIFAR-10 that is within 0.44% of the floating-point accuracy.

More Details

Self-correcting Flip-flops for Triple Modular Redundant Logic in a 12-nm Technology

Proceedings - IEEE International Symposium on Circuits and Systems

Clark, Lawrence T.; Duvnjak, Alen; Young-Sciortino, Clifford; Cannon, Matthew J.; Brunhaver, John; Agarwal, Sapan A.; Wilson, Donald; Barnaby, Hugh; Marinella, Matthew J.

Area efficient self-correcting flip-flops for use with triple modular redundant (TMR) soft-error hardened logic are implemented in a 12-nm finFET process technology. The TMR flip-flop slave latches self-correct in the clock low phase using Muller C-elements in the latch feedback. These C-elements are driven by the two redundant stored values and not by the slave latch itself, saving area over a similar implementation using majority gate feedback. These flip-flops are implemented as large shift-register arrays on a test chip and have been experimentally tested for their soft-error mitigation in static and dynamic modes of operation using heavy ions and protons. We show how high clock skew can result in susceptibility to soft-errors in the dynamic mode, and explain the potential failure mechanism.

More Details

Eris: Fault Injection and Tracking Framework for Reliability Analysis of Open-Source Hardware

Proceedings - 2022 IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2022

Nema, Shubham; Kirschner, Justin; Adak, Debpratim; Agarwal, Sapan A.; Feinberg, Benjamin F.; Rodrigues, Arun; Marinella, Matthew J.; Awad, Amro

As transistors have been scaled over the past decade, modern systems have become increasingly susceptible to faults. Increased transistor densities and lower capacitances make a particle strike more likely to cause an upset. At the same time, complex computer systems are increasingly integrated into safety-critical systems such as autonomous vehicles. These two trends make the study of system reliability and fault tolerance essential for modern systems. To analyze and improve system reliability early in the design process, new tools are needed for RTL fault analysis.This paper proposes Eris, a novel framework to identify vulnerable components in hardware designs through fault-injection and fault propagation tracking. Eris builds on ESSENT - a fast C/C++ RTL simulation framework - to provide fault injection, fault tracking, and control-flow deviation detection capabilities for RTL designs. To demonstrate Eris' capabilities, we analyze the reliability of the open source Rocket Chip SoC by randomly injecting faults during thousands of runs on four microbenchmarks. As part of this analysis we measure the sensitivity of different hardware structures to faults based on the likelihood of a random fault causing silent data corruption, unrecoverable data errors, program crashes, and program hangs. We detect control flow deviations and determine whether or not they are benign. Additionally, using Eris' novel fault-tracking capabilities we are able to find 78% more vulnerable components in the same number of simulations compared to RTL-based fault injection techniques without these capabilities. We will release Eris as an open-source tool to aid future research into processor reliability and hardening.

More Details

Analysis and mitigation of parasitic resistance effects for analog in-memory neural network acceleration

Semiconductor Science and Technology

Xiao, Tianyao X.; Feinberg, Benjamin F.; Rohan, Jacob N.; Bennett, Christopher H.; Agarwal, Sapan A.; Marinella, Matthew J.

To support the increasing demands for efficient deep neural network processing, accelerators based on analog in-memory computation of matrix multiplication have recently gained significant attention for reducing the energy of neural network inference. However, analog processing within memory arrays must contend with the issue of parasitic voltage drops across the metal interconnects, which distort the results of the computation and limit the array size. This work analyzes how parasitic resistance affects the end-to-end inference accuracy of state-of-the-art convolutional neural networks, and comprehensively studies how various design decisions at the device, circuit, architecture, and algorithm levels affect the system's sensitivity to parasitic resistance effects. A set of guidelines are provided for how to design analog accelerator hardware that is intrinsically robust to parasitic resistance, without any explicit compensation or re-training of the network parameters.

More Details

Scanning ultrafast electron microscopy reveals photovoltage dynamics at a deeply buried p-Si/Si O2 interface

Physical Review B

Ellis, S.R.; Bartelt, Norman C.; Leonard, Francois L.; Celio, K.C.; Fuller, Elliot J.; Hughart, David R.; Garland, Diana; Marinella, Matthew J.; Michael, Joseph R.; Chandler, D.W.; Liao, B.; Talin, A.A.

The understanding and control of charge carrier interactions with defects at buried insulator/semiconductor interfaces is essential for achieving optimum performance in modern electronics. Here, we report on the use of scanning ultrafast electron microscopy (SUEM) to remotely probe the dynamics of excited carriers at a Si surface buried below a thick thermal oxide. Our measurements illustrate a previously unidentified SUEM contrast mechanism, whereby optical modulation of the space-charge field in the semiconductor modulates the electric field in the thick oxide, thus affecting its secondary electron yield. By analyzing the SUEM contrast as a function of time and laser fluence we demonstrate the diffusion mediated capture of excited carriers by interfacial traps.

More Details

Thermal Infrared Detectors: expanding performance limits using ultrafast electron microscopy

Talin, A.A.; Ellis, Scott; Bartelt, Norman C.; Leonard, Francois L.; Perez, Christopher P.; Celio, Km; Fuller, Elliot J.; Hughart, David R.; Garland, Diana; Marinella, Matthew J.; Michael, Joseph R.; Chandler, D.W.; Young, Steve M.; Smith, Sean M.; Kumar, Suhas K.

This project aimed to identify the performance-limiting mechanisms in mid- to far infrared (IR) sensors by probing photogenerated free carrier dynamics in model detector materials using scanning ultrafast electron microscopy (SUEM). SUEM is a recently developed method based on using ultrafast electron pulses in combination with optical excitations in a pump- probe configuration to examine charge dynamics with high spatial and temporal resolution and without the need for microfabrication. Five material systems were examined using SUEM in this project: polycrystalline lead zirconium titanate (a pyroelectric), polycrystalline vanadium dioxide (a bolometric material), GaAs (near IR), InAs (mid IR), and Si/SiO 2 system as a prototypical system for interface charge dynamics. The report provides detailed results for the Si/SiO 2 and the lead zirconium titanate systems.

More Details

Energy Efficient Computing R&D Roadmap Outline for Automated Vehicles

Aitken, Rob; Nakahira, Yorie; Strachan, John P.; Bresniker, Kirk; Young, Ian; Li, Zhiyong L.; Klebanoff, Leonard E.; Burchard, Carrie L.; Kumar, Suhas K.; Marinella, Matthew J.; Severa, William M.; Talin, A.A.; Vineyard, Craig M.; Mailhiot, Christian M.; Dick, Robert; Lu, Wei; Mogill, Jace

Automated vehicles (AV) hold great promise for improving safety, as well as reducing congestion and emissions. In order to make automated vehicles commercially viable, a reliable and highperformance vehicle-based computing platform that meets ever-increasing computational demands will be key. Given the state of existing digital computing technology, designers will face significant challenges in meeting the needs of highly automated vehicles without exceeding thermal constraints or consuming a large portion of the energy available on vehicles, thus reducing range between charges or refills. The accompanying increases in energy for AV use will place increased demand on energy production and distribution infrastructure, which also motivates increasing computational energy efficiency.

More Details
Results 1–25 of 374
Results 1–25 of 374