Publications

2 Results

Search results

Jump to search filters

3D optical diagnostics for explosively driven deformation and fragmentation

International Journal of Impact Engineering

Guildenbecher, Daniel R.; Jones, Elizabeth M.; Munz, Elise D.; Reu, Phillip L.; Miller, Timothy J.; Perez, Francisco; Thompson, Andrew D.; Ball, James P.

High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.

More Details

Advancing the science of explosive fragmentation and afterburn fireballs though experiments and simulations at the benchtop scale

Guildenbecher, Daniel R.; Dallman, Ann R.; Munz, Elise D.; Halls, Benjamin R.; Jones, Elizabeth M.; Kearney, S.P.; Marinis, Ryan T.; Murzyn, Christopher M.; Richardson, Daniel R.; Perez, Francisco; Reu, Phillip L.; Thompson, Andrew D.; Welliver, Marc W.; Mazumdar, Yi C.; Brown, Alex; Pourpoint, Timothee L.; White, Catriona M.L.; Balachandar, S.; Houim, Ryan W.

Detonation of explosive devices produces extremely hazardous fragments and hot, luminous fireballs. Prior experimental investigations of these post-detonation environments have primarily considered devices containing hundreds of grams of explosives. While relevant to many applications, such large- scale testing also significantly restricts experimental diagnostics and provides limited data for model validation. As an alternative, the current work proposes experiments and simulations of the fragmentation and fireballs from commercial detonators with less than a gram of high explosive. As demonstrated here, reduced experimental hazards and increased optical access significantly expand the viability of advanced imaging and laser diagnostics. Notable developments include the first known validation of MHz-rate optical fragment tracking and the first ever Coherent Anti-Stokes Raman Scattering (CARS) measures of post-detonation fireball temperatures. While certainly not replacing the need for full-scale verification testing, this work demonstrates new opportunities to accelerate developments of diagnostics and predictive models of post-detonation environments.

More Details
2 Results
2 Results