Publications

11 Results

Search results

Jump to search filters

AI for Technoscientific Discovery: A Human-Inspired Architecture

Journal of Creativity (Online)

Tsao, Jeffrey Y.; Abbott, Robert G.; Crowder, Douglas C.; Desai, Saaketh D.; Dingreville, Remi P.; Fowler, James E.; Garland, Anthony G.; Murdock, Jaimie M.; Steinmetz, Scott T.; Yarritu, Kevin A.; Johnson, Curtis M.; Stracuzzi, David J.; Padmanabha Iyer, Prasad P.

We present a high-level architecture for how artificial intelligences might advance and accumulate scientific and technological knowledge, inspired by emerging perspectives on how human intelligences advance and accumulate such knowledge. Agents advance knowledge by exercising a technoscientific method—an interacting combination of scientific and engineering methods. The technoscientific method maximizes a quantity we call “useful learning” via more-creative implausible utility (including the “aha!” moments of discovery), as well as via less-creative plausible utility. Society accumulates the knowledge advanced by agents so that other agents can incorporate and build on to make further advances. The proposed architecture is challenging but potentially complete: its execution might in principle enable artificial intelligences to advance and accumulate an equivalent of the full range of human scientific and technological knowledge.

More Details

Control of Quantized Spontaneous Emission from Single GaAs Quantum Dots Embedded in Huygens’ Metasurfaces

Nano Letters

Padmanabha Iyer, Prasad P.; Prescott, Samuel; Addamane, Sadhvikas J.; Jung, Hyunseung; Henshaw, Jacob D.; Mounce, Andrew M.; Luk, Ting S.; Mitrofanov, Oleg; Brener, Igal B.

Advancements in photonic quantum information systems (QIS) have driven the development of high-brightness, on-demand, and indistinguishable semiconductor epitaxial quantum dots (QDs) as single photon sources. Strain-free, monodisperse, and spatially sparse local-droplet-etched (LDE) QDs have recently been demonstrated as a superior alternative to traditional Stranski-Krastanov QDs. However, integration of LDE QDs into nanophotonic architectures with the ability to scale to many interacting QDs is yet to be demonstrated. We present a potential solution by embedding isolated LDE GaAs QDs within an Al0.4Ga0.6As Huygens’ metasurface with spectrally overlapping fundamental electric and magnetic dipolar resonances. We demonstrate for the first time a position- and size-independent, 1 order of magnitude increase in the collection efficiency and emission lifetime control for single-photon emission from LDE QDs embedded within the Huygens’ metasurfaces. Our results represent a significant step toward leveraging the advantages of LDE QDs within nanophotonic architectures to meet the scalability demands of photonic QIS.

More Details

Photoconductive Metasurfaces for Near-Field Terahertz Sources and Detectors

Proceedings of SPIE - The International Society for Optical Engineering

Hale, Lucy; Jung, Hyunseung; Seddon, James; Sarma, Raktim S.; Gennaro, Sylvain D.; Briscoe, Jayson B.; Harris, Charles T.; Luk, Ting S.; Padmanabha Iyer, Prasad P.; Addamane, Sadhvikas J.; Reno, John L.; Brener, Igal B.; Mitrofanov, Oleg

Aperture near-field microscopy and spectroscopy (a-SNOM) enables the direct experimental investigation of subwavelength-sized resonators by sampling highly confined local evanescent fields on the sample surface. Despite its success, the versatility and applicability of a-SNOM is limited by the sensitivity of the aperture probe, as well as the power and versatility of THz sources used to excite samples. Recently, perfectly absorbing photoconductive metasurfaces have been integrated into THz photoconductive antenna detectors, enhancing their efficiency and enabling high signal-to-noise ratio THz detection at significantly reduced optical pump powers. Here, we discuss how this technology can be applied to aperture near-field probes to improve both the sensitivity and potentially spatial resolution of a-SNOM systems. In addition, we explore the application of photoconductive metasurfaces also as near-field THz sources, providing the possibility of tailoring the beam profile, polarity and phase of THz excitation. Photoconductive metasurfaces therefore have the potential to broaden the application scope of aperture near-field microscopy to samples and material systems which currently require improved spatial resolution, signal-to-noise ratio, or more complex excitation conditions.

More Details

InAs based Nonlinear Dielectric Metasurface for Binary Phase Terahertz Generation

2023 Conference on Lasers and Electro-Optics, CLEO 2023

Jung, Hyunseung; Hale, Lucy L.; Gennaro, Sylvain D.; Briscoe, Jayson B.; Padmanabha Iyer, Prasad P.; Doiron, Chloe F.; Harris, Charles T.; Luk, Ting S.; Addamane, Sadhvikas J.; Reno, John L.; Brener, Igal B.; Mitrofanov, Oleg

We demonstrate an InAs-based nonlinear dielectric metasurface, which can generate terahertz (THz) pulses with opposite phase in comparison to an unpatterned InAs layer. It enables binary phase THz metasurfaces for generation and focusing of THz pulses.

More Details

Cascaded Optical Nonlinearities in Dielectric Metasurfaces

ACS Photonics

Gennaro, Sylvain D.; Doiron, Chloe F.; Karl, Nicholas J.; Padmanabha Iyer, Prasad P.; Serkland, Darwin K.; Sinclair, Michael B.; Brener, Igal B.

Since the discovery of the laser, optical nonlinearities have been at the core of efficient light conversion sources. Typically, thick transparent crystals or quasi-phase matched waveguides are utilized in conjunction with phase-matching techniques to select a single parametric process. In recent years, due to the rapid developments in artificially structured materials, optical frequency mixing has been achieved at the nanoscale in subwavelength resonators arrayed as metasurfaces. Phase matching becomes relaxed for these wavelength-scale structures, and all allowed nonlinear processes can, in principle, occur on an equal footing. This could promote harmonic generation via a cascaded (consisting of several frequency mixing steps) process. However, so far, all reported work on dielectric metasurfaces have assumed frequency mixing from a direct (single step) nonlinear process. In this work, we prove the existence of cascaded second-order optical nonlinearities by analyzing the second- and third-wave mixing from a highly nonlinear metasurface in conjunction with polarization selection rules and crystal symmetries. We find that the third-wave mixing signal from a cascaded process can be of comparable strength to that from conventional third-harmonic generation and that surface nonlinearities are the dominant mechanism that contributes to cascaded second-order nonlinearities in our metasurface.

More Details

Cascaded Second Order Optical Nonlinearities in a Dielectric Metasurface

Optics InfoBase Conference Papers

Gennaro, Sylvain D.; Doiron, Chloe F.; Karl, Nicholas J.; Padmanabha Iyer, Prasad P.; Sinclair, Michael B.; Brener, Igal B.

In this work, we analyze the second and third harmonic signal from a dielectric metasurface in conjunction with polarization selection rules to unambiguously demonstrate the occurrence of cascaded second-order nonlinearities.

More Details
11 Results
11 Results