Publications

19 Results
Skip to search filters

Typological representation of the offshore oceanographic environment along the Alaskan North Slope

Continental Shelf Research

Eymold, W.E.; Flanary, C.F.; Erikson, L.E.; Nederhoff, K.N.; Chartrand, Chris C.; Jones, C.J.; Kasper, J.K.; Bull, Diana L.

Erosion and flooding impacts to Arctic coastal environments are intensifying with nearshore oceanographic conditions acting as a key environmental driver. Robust and comprehensive assessment of the nearshore oceanographic conditions require knowledge of the following boundary conditions: incident wave energy, water level, incident wind energy, ocean temperature and salinity, bathymetry, and shoreline orientation. The number of offshore oceanographic boundary conditions can be large, requiring a significant computational investment to reproduce nearshore conditions. This present study develops location-independent typologies to reduce the number of boundary conditions needed to assess nearshore oceanographic environments in both a Historical (2007–2019) and Future (2020–2040) timespan along the Alaskan North Slope. We used WAVEWATCH III® and Delft3D Flexible Mesh model output from six oceanographic sites located along a constant ~50 m bathymetric line spanning the Chukchi to Beaufort Seas. K-means clustering was applied to the energy-weighted joint-probability distribution of significant wave height (Hs) and peak period (Tp). Distributions of wave and wind direction, wind speed, and water level associated with location-independent centroids were assigned single values to describe a reduced order, typological rendition of offshore oceanographic conditions. Reanalysis data (e.g., ASRv2, ERA5, and GOFS) grounded the historical simulations while projected conditions were obtained from downscaled GFDL-CM3 forced under RCP8.5 conditions. Location-dependence for each site is established through the occurrence joint-probability distribution in the form of unique scaling factors representing the fraction of time that the typology would occupy over a representative year. As anticipated, these typologies show increasingly energetic ocean conditions in the future. They also enable computationally efficient simulation of the nearshore oceanographic environment along the North Slope of Alaska for better characterization of coastal processes (e.g., erosion, flooding, or sediment transport).

More Details

A method for generating moving, orthogonal, area preserving polygonal meshes

Journal of Computational Physics

Chartrand, Chris C.; Perot, J.B.

A new method for generating locally orthogonal polygonal meshes from a set of generator points is presented in which polygon areas are a constraint. The area constraint property is particularly useful for particle methods where moving polygons track a discrete portion of material. Because Voronoi polygon meshes have some very attractive mathematical and numerical properties for numerical computation, a generalization of Voronoi polygon meshes was formulated that enforces a polygon area constraint. Area constrained moving polygonal meshes allow one to develop hybrid particle-mesh numerical methods that display some of the most attractive features of each approach. It is shown that this mesh construction method can continuously reconnect a moving, unstructured polygonal mesh in a pseudo-Lagrangian fashion without change in cell area/volume, and the method's ability to simulate various physical scenarios is shown. The advantages are identified for incompressible fluid flow calculations, with demonstration cases that include material discontinuities of all three phases of matter and large density jumps.

More Details

Turbulence-parameter estimation for current-energy converters using surrogate model optimization

Renewable Energy

Olson, Sterling S.; Su, Jack C.P.; Silva, Humberto; Chartrand, Chris C.; Roberts, Jesse D.

Surrogate models maximize information utility by building predictive models in place of computational or experimentally expensive model runs. Marine hydrokinetic current energy converters require large-domain simulations to estimate array efficiencies and environmental impacts. Meso-scale models typically represent turbines as actuator discs that act as momentum sinks and sources of turbulence and its dissipation. An OpenFOAM model was developed where actuator disc k-ε turbulence was characterized using an approach developed for flows through vegetative canopies. Turbine-wake data from laboratory flume experiments collected at two influent turbulence intensities were used to calibrate parameters in the turbulence-source terms in the k-ε equations. Parameter influences on longitudinal wake profiles were estimated using Gaussian process regression with subsequent optimization minimizing the objective function within 3.1% of those obtained using the full model representation, but for 74% of the computational cost (far fewer model runs). This framework facilitates more efficient parameterization of the turbulence-source equations using turbine-wake data.

More Details

The performance of a spectral wave model at predicting wave farm impacts

Energies

Cameron Mcnatt, J.; Porter, Aaron; Chartrand, Chris C.; Roberts, Jesse D.

For renewable ocean wave energy to support global energy demands, wave energy converters (WECs) will likely be deployed in large numbers (farms), which will necessarily change the nearshore environment. Wave farm induced changes can be both helpful (e.g., beneficial habitat and coastal protection) and potentially harmful (e.g., degraded habitat, recreational, and commercial use) to existing users of the coastal environment. It is essential to estimate this impact through modeling prior to the development of a farm, and to that end, many researchers have used spectral wave models, such as Simulating WAves Nearshore (SWAN), to assess wave farm impacts. However, the validity of the approaches used within SWAN have not been thoroughly verified or validated. Herein, a version of SWAN, called Sandia National Laboratories (SNL)-SWAN, which has a specialized WEC implementation, is verified by comparing its wave field outputs to those of linear wave interaction theory (LWIT), where LWIT is theoretically more appropriate for modeling wave-body interactions and wave field effects. The focus is on medium-sized arrays of 27 WECs, wave periods, and directional spreading representative of likely conditions, as well as the impact on the nearshore. A quantitative metric, the Mean Squared Skill Score, is used. Results show that the performance of SNL-SWAN as compared to LWIT is “Good” to “Excellent”.

More Details

Big Wheel Farm: Farmland Scour Reduction

Olson, Sterling S.; Chartrand, Chris C.; Roberts, Jesse D.

Flood irrigation benefits from low infrastructure costs and maintenance but the scour near the weirs can cause channeling of the flow preventing the water from evenly dispersing across the field. Using flow obstructions in front of the weir could reduce be a low cost solution to reduce the scour. The mitigation strategy was to virtually simulate the effects of various geometric changes to the morphology (e.g. holes and bumps) in front of the weir as a means to diffuse the high intensity flow coming from the gate. After running a parametric study for the dimensions of the shapes that included a Gaussian, semi-circle, and rectangle; a Gaussian-hole in front of the gates showed the most promise to reduce farm field shear-stresses with the added benefit of being easy to construct and implement in practice. Further the simulations showed that the closer the Gaussian-hole could be placed to the gate the sooner the high shear stress could be reduced. To realize the most benefit from this mitigation strategy, it was determined that the maximum depth of the Gaussian-hole should be 0.5 m. The width of the hole in the flow direction and the length of the Gaussian-hole normal to the flow should be 0.5 m and 3 m respectively as measured by the full width at half maximum.

More Details
19 Results
19 Results