Publications

14 Results
Skip to search filters

Crystallographic effects on transgranular chloride-induced stress corrosion crack propagation of arc welded austenitic stainless steel

npj Materials Degradation

Qu, Haozheng J.; Tao, Fei; Gu, Nianju; Montoya, Timothy M.; Taylor, Jason M.; Schaller, Rebecca S.; Schindelholz, Eric; Wharry, Janelle P.

The effect of crystallography on transgranular chloride-induced stress corrosion cracking (TGCISCC) of arc welded 304L austenitic stainless steel is studied on >300 grains along crack paths. Schmid and Taylor factor mismatches across grain boundaries (GBs) reveal that cracks propagate either from a hard to soft grain, which can be explained merely by mechanical arguments, or soft to hard grain. In the latter case, finite element analysis reveals that TGCISCC will arrest at GBs without sufficient mechanical stress, favorable crystallographic orientations, or crack tip corrosion. GB type does not play a significant role in determining TGCISCC cracking behavior nor susceptibility. TGCISCC crack behaviors at GBs are discussed in the context of the competition between mechanical, crystallographic, and corrosion factors.

More Details

Stress corrosion cracking mechanism of cold spray coating on a galvanically similar substrate

Materials Science and Engineering: A

Qu, Haozheng J.; Srinivasan, Jayendran; Zhao, Yangyang; Mao, Keyou S.; Taylor, Jason M.; Marino, Gabriella; Montoya, Timothy M.; Johnson, Kyle; Locke, Jenifer S.; Schaller, Rebecca S.; Schindelholz, Eric; Wharry, Janelle P.

The chloride-induced stress corrosion cracking (CISCC) mechanism of cold spray (CS) coating on a galvanically similar substrate is investigated. Arc welded 304L stainless steel (SS) specimens are loaded into four-point bend fixtures, cold sprayed with 304L SS, then immersed in boiling MgCl2. Interconnected porosity forms through crevice corrosion along CS splat boundaries, allowing corrosive species to penetrate through the CS layer. Nevertheless, the substrate is resistant to CISCC likely because of compressive stress introduced by peening during CS particle impacts. These findings underscore the importance of residual stress in the environmental degradation of CS coatings or repairs of engineering structures.

More Details

SNF Interim Storage Canister Corrosion and Surface Environment Investigations (FY21 Status Report)

Bryan, Charles R.; Knight, Andrew W.; Nation, Brendan L.; Montoya, Timothy M.; Karasz, Erin K.; Katona, Ryan M.; Schaller, Rebecca S.

This progress report describes work performed during FY21 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of canister materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In FY21, modeling and experimental work was performed that further defined our understanding of the potential chemical and physical environment present on canister surfaces at both marine and inland sites. Research also evaluated the relationship between the environment and the rate, extent, and morphology of corrosion, as well as the corrosion processes that occur. Finally, crack growth rate testing under relevant environmental conditions was initiated.

More Details

SNF Interim Storage Canister Corrosion and Surface Environment Investigations (FY2020 Status Report)

Schaller, Rebecca S.; Knight, Andrew W.; Bryan, Charles R.; Nation, Brendan L.; Montoya, Timothy M.; Katona, Ryan M.

This progress report describes work performed during FY20 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY20 further defined our understanding of the potential chemical and physical environment present on canister surfaces, evaluated the relationship between the environment and the resultant corrosion that occurs, and initiated crack growth rate testing under relevant environmental conditions. In FY20, work to define dry storage canister surface environments included several tasks. First, collection of dust deposition specimens from independent spent fuel storage installation (ISFSI) site locations helped to establish a more complete understanding of the potential chemical environment formed on the canister. Second, the predicted evolution of canister surface relative humidity RH) values was estimated using ISFSI site weather data and the horizontal canister thermal model used by the SNL probabilistic SCC model. These calculations determined that for typical ISFSI weather conditions, seasalt deliquescence to produce MgCl2-rich brines could occur in less than 20 years at the coolest locations on the canister surface, and, even after nearly 300 years, conditions for NaCl deliquescence (75% RH) are not reached. This work illustrates the importance of understanding the stability of MgCl2-rich brines on the heated canister surface, and the potential impact of brine composition on corrosion processes, including pitting and stress corrosion cracking. In an additional study, the description of the canister surface environment was refined in order to define more realistic corrosion testing environments including diurnal cycles, soluble salt chemistries, and inert mineral particles. The potential impacts of these phenomena on canister corrosion are being evaluated experimentally. Finally, work over the past few years to evaluate the stability of magnesium chloride brines continued in FY20. MgCl2 degassing experiments were carried out, confirming that MgCl2 brines slowly degas HCl on heated surfaces, converting to less deliquescent magnesium hydroxychloride phases and potentially leading to brine dryout.

More Details

Corrosion-Resistant Coatings for Mitigation and Repair of Spent Nuclear Fuel Dry Storage Canisters

Knight, Andrew W.; Schaller, Rebecca S.; Bryan, Charles R.; Montoya, Timothy M.; Parey, Alana M.; Carpenter, Jacob C.; Maguire, Makeila M.

This report summarizes the results of a literature survey on coatings and surface treatments that are used to provide corrosion protection for exposed metal surfaces. The coatings are discussed in the context of being used on stainless steel spent nuclear fuel (SNF) dry storage canisters for potential prevention or repair of corrosion and stress corrosion cracking. The report summarizes the properties of different coating classes, including the mechanisms of protection, their physical properties, and modes of degradation (thermal, chemical, radiological). Also discussed are the current standard technologies for application of the coatings, including necessary surface pretreatments (degreasing, rust removal, grinding) and their effects on coating adhesion and performance. The coatings are also classified according their possible use for in situ repair; ex situ repair, requiring removal from the overpack; and ex situ prevention, or application prior to fuel loading to provide corrosion protection over the lifetime of the canister.

More Details
14 Results
14 Results