Preliminary Simulations of Commercial Drying Cycles Using the Advanced Drying Cycle Simulator
The purpose of this report is to document updates on the apparatus to simulate commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents fiscal year 2023 (FY23) updates on the Advanced Drying Cycle Simulator (ADCS). This apparatus was built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. These waterproof heaters are the next generation design to heater rods developed and tested at Sandia National Laboratories in FY20. In FY23, a series of four simulated commercial drying tests was completed. This report presents the temperature and pressure histories of the drying tests as well as axial temperature profiles that can be compared to data from the Electric Power Research Institute (EPRI) High Burnup Demonstration TN-32B cask. Water content measurements and dew point calculations from a Hiden Analytical HPR-30 mass spectrometer are also presented in this report. Due to familiarization with this first-of-a-kind system, refinements to equipment calibration and test procedures have been identified to better match commercial drying cycles for future simulated tests. However, the presented data demonstrate the successful construction and operation of a viable research platform for quantifying residual water content closely approaching that expected in dry storage canisters during commercial drying procedures.