Publications

Results 1–25 of 105

Search results

Jump to search filters

Assessment of Materials-Based Options for On-Board Hydrogen Storage for Rail Applications

Allendorf, Mark; Klebanoff, Leonard E.; Stavila, Vitalie; Witman, Matthew D.

The objective of this project was to evaluate material- and chemical-based solutions for hydrogen storage in rail applications as an alternative to high-pressure hydrogen gas and liquid hydrogen. Three use cases were assessed: yard switchers, long-haul locomotives, and tenders. Four storage options were considered: metal hydrides, nanoporous sorbents, liquid organic hydrogen carriers, and ammonia, using 700 bar compressed hydrogen as a benchmark. The results suggest that metal hydrides, currently the most mature of these options, have the highest potential. Storage in tenders is the most likely use case to be successful, with long-haul locomotives the least likely due to the required storage capacities and weight and volume constraints. Overall, the results are relevant for high-impact regions, such as the South Coast Air Quality Management District, for which an economical vehicular hydrogen storage system with minimal impact on cargo capacity could accelerate adoption of fuel cell electric locomotives. The results obtained here will contribute to the development of technical storage targets for rail applications that can guide future research. Moreover, the knowledge generated by this project will assist in development of material-based storage for stationary applications such as microgrids and backup power for data centers.

More Details

Maritime Fuel Cell Generator Project: 2018 – 2023

Klebanoff, Leonard E.

This report summarizes activity in the Maritime Fuel Cell (MarFC) Generator Project from 2018 – 2023. FY 2018 saw the implementation of upgrades and repairs, making the unit more reliable and operator friendly. In FY2019 the team engaged the Scripps Institution of Oceanography (SIO) to use the MarFC to provide zero-emission shore power to the research vessel R/V Robert Gordon Sproul while in port at the Nimitz Marine Facility in San Diego, CA. In FY2020, the MarFC unit was shipped to San Diego, CA. A fueling contract with IGX was established to support MarFC operations at SIO, with renewable hydrogen provided by the California State University Los Angeles (CSULA) hydrogen station. The project team (Sandia, Cummins/Hydrogenics) provided training to SIO staff on the technical details of the MarFC, the safe use of hydrogen in general and the MarFC in particular. The first fueling of the unit at the SIO pier was successfully completed by IGX. The first powering of a vessel with fuel-cell shore power was conducted with the R/V Robert Gordon Sproul. While the mechanical systems (lights, AC, ventilation, hydraulics, pumps and cranes) were powered without incident, problems arose when powering the computer systems. Inspections carried out in FY2021 revealed the MarFC needed routine maintenance. Maintenance was performed and the unit was upgraded. The MarFC was turned on after the year pause, and initial test data on power levels and stability were collected. FY2022 was a year spent repairing, upgrading and testing the MarFC unit. Spikes in power and voltage were observed above 60 kW that could potentially extend below 60 kW with time. Such spikes could cause problems with the Sproul electrical systems. These age-related problems, the extended time for the Sproul spent in dry dock for scheduled upgrades, and the associated need to reschedule the vessel’s high-priority science missions made it no longer possible to deploy the unit at SIO. After due consideration, the decision was made by DOE, MARAD and the project team to cease the deployment, remove the MarFC from SIO, and not pursue further deployment activities. On December 2, 2022, the MarFC unit was removed from the Scripps Nimitz Marine Facility and shipped to Fridley, Michigan. The Cummins/Hydrogenics plan for the unit is to assess the condition of the MarFC subcomponents, and then use it as a training/learning system for technical employees new to hydrogen fuel-cell technology. After summarizing project activity from 2018 – 2023, this report provides a review of lessons learned. This report provides next steps in contemplating a follow-on project that would further advance the use of fuel-cell-based shore power in a marine setting. A comparison is made of the project results to the original objectives. This report ends with an accounting of presentations stemming from the project, and a list of references.

More Details

Maritime Fuel Cell Generator Project [FY2019]

Klebanoff, Leonard E.

The objective of this project is the demonstration, and validation of hydrogen fuel cells in the marine environment. The prototype generator can be used to guide commercial development of a fuel cell generator product. Work includes assessment and validation of the commercial value proposition of both the application and the hydrogen supply infrastructure through third-party hosted deployment as the next step towards widespread use of hydrogen fuel cells in the maritime environment.

More Details

Maritime Fuel Cell Generator Project [FY2018]

Klebanoff, Leonard E.

Fuel costs and emissions in maritime ports are an opportunity for transportation energy efficiency improvement and emissions reduction efforts. Ocean-going vessels, harbor craft, and cargo handling equipment are still major contributors to air pollution in and around ports. Diesel engine costs continually increase as tighter criteria pollutant regulations come into effect and will continue to do so with expected introduction of carbon emission regulations. Diesel fuel costs will also continue to rise as requirements for cleaner fuels are imposed. Both aspects will increase the cost of diesel-based power generation on the vessel and on shore. Although fuel cells have been used in many successful applications, they have not been technically or commercially validated in the port environment. One opportunity to do so was identified in Honolulu Harbor at the Young Brothers Ltd. wharf. At this facility, barges sail regularly to and from neighboring islands and containerized diesel generators provide power for the reefers while on the dock and on the barge during transport, nearly always at part load. Due to inherent efficiency characteristics of fuel cells and diesel generators, switching to a hydrogen fuel cell power generator was found to have potential emissions and cost savings. Deployment in Hawaii showed the unit needed greater reliability in the start-up sequence, as well as an improved interface to the end-user, thereby presenting opportunities for repairing/upgrading the unit for deployment in another locale. In FY2018, the unit was repaired and upgraded based on the Hawaii experience, and another deployment site was identified for another 6-month deployment of the 100 kW MarFC.

More Details

Refueling Infrastructure Scoping and Feasibility Assessment for Hydrogen Rail Applications

Ehrhart, Brian D.; Bran Anleu, Gabriela A.; Mohmand, Jamal A.; Baird, Austin R.; Klebanoff, Leonard E.

The feasibility and component cost of hydrogen rail refueling infrastructure is examined. Example reference stations can inform future studies on components and systems specifically for hydrogen rail refueling facilities. All of the 5 designs considered assumed the bulk storage of liquid hydrogen on-site, from which either gaseous or liquid hydrogen would be dispensed. The first design was estimated to refuel 10 multiple unit trains per day, each train containing 260 kg of gaseous hydrogen at 350 bar on-board. The second base design targeted the refueling of 50 passenger locomotives, each with 400 kg of gaseous hydrogen on-board at 350 bar. Variations from this basic design were made to consider the effect of two different filling times, two different hydrogen compression methods, and two different station design approaches. For each design variation, components were sized, approximate costs were estimated for major components, and physical layouts were created. For both gaseous hydrogen-dispensing base designs, the design of direct-fill using a cryopump design was the lowest cost due to the high cost of the cascade storage system and gas compressor. The last three base designs all assumed that liquid hydrogen was dispensed into tender cars for freight locomotives that required 7,500 kg of liquid hydrogen, and the three different designs assumed that 5, 50, or 200 tender cars were refueled every day. The total component costs are very different for each design, because each design has a very different dispensing capacity. The total component cost for these three designs are driven by the cost of the liquid hydrogen tank; additionally, delivering that much liquid hydrogen to the refueling facility may not be practical. Many of the designs needed the use of multiple evaporators, compressors, and cryopumps operating in parallel to meet required flow rates. In the future, the components identified here can be improved and scaled-up to better fit the needs of heavy-duty refueling facilities. This study provides basic feasibility and first-order design guidance for hydrogen refueling facilities serving emerging rail applications.

More Details

Energy Efficient Computing R&D Roadmap Outline for Automated Vehicles

Aitken, Rob; Nakahira, Yorie; Strachan, John P.; Bresniker, Kirk; Young, Ian; Li, Zhiyong; Klebanoff, Leonard E.; Burchard, Carrie; Kumar, Suhas; Marinella, Matthew; Severa, William M.; Talin, Albert A.; Vineyard, Craig M.; Mailhiot, Christian; Dick, Robert; Lu, Wei; Mogill, Jace

Automated vehicles (AV) hold great promise for improving safety, as well as reducing congestion and emissions. In order to make automated vehicles commercially viable, a reliable and highperformance vehicle-based computing platform that meets ever-increasing computational demands will be key. Given the state of existing digital computing technology, designers will face significant challenges in meeting the needs of highly automated vehicles without exceeding thermal constraints or consuming a large portion of the energy available on vehicles, thus reducing range between charges or refills. The accompanying increases in energy for AV use will place increased demand on energy production and distribution infrastructure, which also motivates increasing computational energy efficiency.

More Details

Progress, Challenges, and Opportunities in the Synthesis, Characterization, and Application of Metal-Boride-Derived Two-Dimensional Nanostructures

ACS Materials Letters

Sharma, Peter A.; Stavila, Vitalie; Klebanoff, Leonard E.

Two-dimensional (2D) metal-boride-derived nanostructures have been a focus of intense research for the past decade, with an emphasis on new synthetic approaches, as well as on the exploration of possible applications in next-generation advanced materials and devices. Their unusual mechanical, electronic, optical, and chemical properties, arising from low dimensionality, present a new paradigm to the science of metal borides that has traditionally focused on their bulk properties. This Perspective discusses the current state of research on metal-boride-derived 2D nanostructures, highlights challenges that must be overcome, and identifies future opportunities to fully utilize their potential.

More Details

Study of Hydrogen Fuel Cell Technology for Freight Rail Propulsion and Review of Relevant Industry Standards

Ehrhart, Brian D.; Klebanoff, Leonard E.; Mohmand, Jamal A.; Markt, Cheri

Alternatives to conventional diesel electric propulsion are currently of interest to rail operators. In the U.S., smaller railroads have implemented natural gas and other railroads are exploring hydrogen technology as a cleaner alternative to diesel. Diesel, battery, hydrogen fuel cell, or track electrification all have trade-offs for operations, economics, safety, and public acceptability. A framework to compare different technologies for specific applications is useful to optimize the desired results. Standards from the Association of American Railroads (AAR) and other industry best practices were reviewed for applicability with hydrogen fuel cell technology. Some technical gaps relate to the physical properties of hydrogen, such as embrittlement of metals, invisible flames, and low liquid temperatures. A reassessment of material selection, leak/flame detection, and thermal insulation methods is required. Hydrogen is less dense and diffuses more easily than natural gas, and liquid hydrogen is colder than liquefied natural gas. Different densities between natural gas and hydrogen require modifications to tank designs and flow rates. Leaked hydrogen will rise rather than pool on the ground like diesel, requiring a modification to the location of hydrogen tanks on rolling stock. Finally, the vibration and shock experienced in the rail environment is higher than light-duty vehicles and stationary applications for which current fuel cell technology has been developed, requiring a modification in tank design requirements and testing.

More Details
Results 1–25 of 105
Results 1–25 of 105