Publications

Results 1–25 of 53

Search results

Jump to search filters

Calibrating hypersonic turbulence flow models with the HIFiRE-1 experiment using data-driven machine-learned models

Computer Methods in Applied Mechanics and Engineering

Chowdhary, Kamaljit S.; Hoang, Chi K.; Ray, Jaideep R.; Lee, Kookjin

In this paper we study the efficacy of combining machine-learning methods with projection-based model reduction techniques for creating data-driven surrogate models of computationally expensive, high-fidelity physics models. Such surrogate models are essential for many-query applications e.g., engineering design optimization and parameter estimation, where it is necessary to invoke the high-fidelity model sequentially, many times. Surrogate models are usually constructed for individual scalar quantities. However there are scenarios where a spatially varying field needs to be modeled as a function of the model's input parameters. We develop a method to do so, using projections to represent spatial variability while a machine-learned model captures the dependence of the model's response on the inputs. The method is demonstrated on modeling the heat flux and pressure on the surface of the HIFiRE-1 geometry in a Mach 7.16 turbulent flow. The surrogate model is then used to perform Bayesian estimation of freestream conditions and parameters of the SST (Shear Stress Transport) turbulence model embedded in the high-fidelity (Reynolds-Averaged Navier–Stokes) flow simulator, using shock-tunnel data. The paper provides the first-ever Bayesian calibration of a turbulence model for complex hypersonic turbulent flows. We find that the primary issues in estimating the SST model parameters are the limited information content of the heat flux and pressure measurements and the large model-form error encountered in a certain part of the flow.

More Details

UQTk Version 3.1.2 User Manual

Sargsyan, Khachik S.; Safta, Cosmin S.; Boll, Luke D.; Johnston, Katherine J.; Khalil, Mohammad K.; Chowdhary, Kamaljit S.; Rai, Prashant; Casey, Tiernan A.; Zeng, Xiaoshu; Debusschere, Bert D.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.2 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

The Fingerprints of Stratospheric Aerosol Injection in E3SM

Wagman, Benjamin M.; Swiler, Laura P.; Chowdhary, Kamaljit S.; Hillman, Benjamin H.

The June 15, 1991 Mt. Pinatubo eruption is simulated in E3SM by injecting 10 Tg of SO2 gas in the stratosphere, turning off prescribed volcanic aerosols, and enabling E3SM to treat stratospheric volcanic aerosols prognostically. This experimental prognostic treatment of volcanic aerosols in the stratosphere results in some realistic behaviors (SO2 evolves into H2SO4 which heats the lower stratosphere), and some expected biases (H2SO4 aerosols sediment out of the stratosphere too quickly). Climate fingerprinting techniques are used to establish a Mt. Pinatubo fingerprint based on the vertical profile of temperature from the E3SMv1 DECK ensemble. By projecting reanalysis data and preindustrial simulations onto the fingerprint, the Mt. Pinatubo stratospheric heating anomaly is detected. Projecting the experimental prognostic aerosol simulation onto the fingerprint also results in a detectable heating anomaly, but, as expected, the duration is too short relative to reanalysis data.

More Details

Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo

Computational Statistics and Data Analysis (Print)

Tucker, James D.; Shand, Lyndsay S.; Chowdhary, Kamaljit S.

Functional data registration is a necessary processing step for many applications. The observed data can be inherently noisy, often due to measurement error or natural process uncertainty; which most functional alignment methods cannot handle. A pair of functions can also have multiple optimal alignment solutions, which is not addressed in current literature. In this paper, a flexible Bayesian approach to functional alignment is presented, which appropriately accounts for noise in the data without any pre-smoothing required. Additionally, by running parallel MCMC chains, the method can account for multiple optimal alignments via the multi-modal posterior distribution of the warping functions. To most efficiently sample the warping functions, the approach relies on a modification of the standard Hamiltonian Monte Carlo to be well-defined on the infinite-dimensional Hilbert space. In this work, this flexible Bayesian alignment method is applied to both simulated data and real data sets to show its efficiency in handling noisy functions and successfully accounting for multiple optimal alignments in the posterior; characterizing the uncertainty surrounding the warping functions.

More Details

UQTk Version 3.1.1 User Manual

Sargsyan, Khachik S.; Safta, Cosmin S.; Johnston, Katherine J.; Khalil, Mohammad K.; Chowdhary, Kamaljit S.; Rai, Prashant; Casey, Tiernan A.; Boll, Luke D.; Zeng, Xiaoshu; Debusschere, Bert D.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.1 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

Characterization of Partially Observed Epidemics - Application to COVID-19

Safta, Cosmin S.; Ray, Jaideep R.; Laros, James H.; Catanach, Thomas A.; Chowdhary, Kamaljit S.; Debusschere, Bert D.; Galvan, Edgar; Geraci, Gianluca G.; Khalil, Mohammad K.; Portone, Teresa P.

This report documents a statistical method for the "real-time" characterization of partially observed epidemics. Observations consist of daily counts of symptomatic patients, diagnosed with the disease. Characterization, in this context, refers to estimation of epidemiological parameters that can be used to provide short-term forecasts of the ongoing epidemic, as well as to provide gross information for the time-dependent infection rate. The characterization problem is formulated as a Bayesian inverse problem, and is predicated on a model for the distribution of the incubation period. The model parameters are estimated as distributions using a Markov Chain Monte Carlo (MCMC) method, thus quantifying the uncertainty in the estimates. The method is applied to the COVID-19 pandemic of 2020, using data at the country, provincial (e.g., states) and regional (e.g. county) levels. The epidemiological model includes a stochastic component due to uncertainties in the incubation period. This model-form uncertainty is accommodated by a pseudo-marginal Metropolis-Hastings MCMC sampler, which produces posterior distributions that reflect this uncertainty. We approximate the discrepancy between the data and the epidemiological model using Gaussian and negative binomial error models; the latter was motivated by the over-dispersed count data. For small daily counts we find the performance of the calibrated models to be similar for the two error models. For large daily counts the negative-binomial approximation is numerically unstable unlike the Gaussian error model. Application of the model at the country level (for the United States, Germany, Italy, etc.) generally provided accurate forecasts, as the data consisted of large counts which suppressed the day-to-day variations in the observations. Further, the bulk of the data is sourced over the duration before the relaxation of the curbs on population mixing, and is not confounded by any discernible country-wide second wave of infections. At the state-level, where reporting was poor or which evinced few infections (e.g., New Mexico), the variance in the data posed some, though not insurmountable, difficulties, and forecasts were able to capture the data with large uncertainty bounds. The method was found to be sufficiently sensitive to discern the flattening of the infection and epidemic curve due to shelter-in-place orders after around 90% quantile for the incubation distribution (about 10 days for COVID-19). The proposed model was also used at a regional level to compare the forecasts for the central and north-west regions of New Mexico. Modeling the data for these regions illustrated different disease spread dynamics captured by the model. While in the central region the daily counts peaked in the late April, in the north-west region the ramp-up continued for approximately three more weeks.

More Details

UQTk User Manual (V.3.1.0)

Sargsyan, Khachik S.; Safta, Cosmin S.; Johnston, Katherine J.; Khalil, Mohammad K.; Chowdhary, Kamaljit S.; Rai, Prashant R.; Casey, Tiernan A.; Zeng, Xiaoshu; Debusschere, Bert D.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.0 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

An improved hyperbolic embedding algorithm

Journal of Complex Networks

Chowdhary, Kamaljit S.; Kolda, Tamara G.

Because hyperbolic space has properties that make it amenable to graph representations, there is significant interest in scalable hyperbolic-space embedding methods. These embeddings enable constant-time approximation of shortest-path distances, and so are significantly more efficient than full shortest-path computations. In this article, we improve on existing landmark-based hyperbolic embedding algorithms for large-scale graphs. Whereas previous methods compute the embedding by using the derivative-free Nelder- Mead simplex optimization method, our approach uses the limited-memoryBFGS(LBFGS) method, which is quasi-Newton optimization, with analytic gradients. Our method is not only significantly faster but also produces higher-quality embeddings. Moreover, we are able to include the hyperbolic curvature as a variable in the optimization. We compare our hyperbolic embedding method implementation in Python (called Hypy) against the best publicly available software, Rigel. Our method is an order of magnitude faster and shows significant improvements in the accuracy of the shortest-path distance calculations. Tests are performed on a variety of real-world networks, and we show the scalability of our method by embedding a graph with 1.8 billion edges and 65 million nodes.

More Details

UQTk Version 3.0.4 User Manual

Sargsyan, Khachik S.; Safta, Cosmin S.; Chowdhary, Kamaljit S.; Castorena, Sarah; De Bord, Sarah; Debusschere, Bert D.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0.4 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

UQTk Version 3.0.3 User Manual

Sargsyan, Khachik S.; Safta, Cosmin S.; Chowdhary, Kamaljit S.; Castorena, Sarah; De Bord, Sarah; Debusschere, Bert D.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0.3 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sen- sitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

Development of machine learning models for turbulent wall pressure fluctuations

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Ling, Julia L.; Barone, Matthew F.; Davis, Warren L.; Chowdhary, Kamaljit S.; Fike, Jeffrey A.

In many aerospace applications, it is critical to be able to model fluid-structure interactions. In particular, correctly predicting the power spectral density of pressure fluctuations at surfaces can be important for assessing potential resonances and failure modes. Current turbulence modeling methods, such as wall-modeled Large Eddy Simulation and Detached Eddy Simulation, cannot reliably predict these pressure fluctuations for many applications of interest. The focus of this paper is on efforts to use data-driven machine learning methods to learn correction terms for the wall pressure fluctuation spectrum. In particular, the non-locality of the wall pressure fluctuations in a compressible boundary layer is investigated using random forests and neural networks trained and evaluated on Direct Numerical Simulation data.

More Details

Machine learning models of errors in large eddy simulation predictions of surface pressure fluctuations

47th AIAA Fluid Dynamics Conference, 2017

Barone, Matthew F.; Fike, Jeffrey A.; Chowdhary, Kamaljit S.; Davis, Warren L.; Ling, Julia L.; Martin, Shawn

We investigate a novel application of deep neural networks to modeling of errors in prediction of surface pressure fluctuations beneath a compressible, turbulent flow. In this context, the truth solution is given by Direct Numerical Simulation (DNS) data, while the predictive model is a wall-modeled Large Eddy Simulation (LES). The neural network provides a means to map relevant statistical flow-features within the LES solution to errors in prediction of wall pressure spectra. We simulate a number of flat plate turbulent boundary layers using both DNS and wall-modeled LES to build up a database with which to train the neural network. We then apply machine learning techniques to develop an optimized neural network model for the error in terms of relevant flow features.

More Details
Results 1–25 of 53
Results 1–25 of 53