Publications

Results 1–25 of 28

Search results

Jump to search filters

Calibration and Localization of Optically Pumped Magnetometers Using Electromagnetic Coils

Sensors

Iivanainen, Joonas; Borna, Amir B.; Zetter, Rasmus; Carter, T.R.; Stephen, Julia M.; Mckay, Jim; Parkkonen, Lauri; Taulu, Samu; Schwindt, Peter S.

In this paper, we propose a method to estimate the position, orientation, and gain of a magnetic field sensor using a set of (large) electromagnetic coils. We apply the method for calibrating an array of optically pumped magnetometers (OPMs) for magnetoencephalography (MEG). We first measure the magnetic fields of the coils at multiple known positions using a well‐calibrated triaxial magnetometer, and model these discreetly sampled fields using vector spherical harmonics (VSH) functions. We then localize and calibrate an OPM by minimizing the sum of squared errors between the model signals and the OPM responses to the coil fields. We show that by using homogeneous and first‐order gradient fields, the OPM sensor parameters (gain, position, and orientation) can be obtained from a set of linear equations with pseudo‐inverses of two matrices. The currents that should be applied to the coils for approximating these low‐order field components can be determined based on the VSH models. Computationally simple initial estimates of the OPM sensor parameters follow. As a first test of the method, we placed a fluxgate magnetometer at multiple positions and estimated the RMS position, orientation, and gain errors of the method to be 1.0 mm, 0.2°, and 0.8%, respectively. Lastly, we calibrated a 48‐channel OPM array. The accuracy of the OPM calibration was tested by using the OPM array to localize magnetic dipoles in a phantom, which resulted in an average dipole position error of 3.3 mm. The results demonstrate the feasibility of using electromagnetic coils to calibrate and localize OPMs for MEG.

More Details

Magnetic Source Imaging Using a Pulsed Optically Pumped Magnetometer Array

IEEE Transactions on Instrumentation and Measurement

Borna, Amir B.; Carter, T.R.; Derego, Paul; James, Conrad D.; Schwindt, Peter S.

We have developed a pulsed optically pumped magnetometer (OPM) array for detecting magnetic field maps originated from an arbitrary current distribution. The presented magnetic source imaging (MSI) system features 24-OPM channels has a data rate of 500 S/s, a sensitivity of 0.8\mathrm {pT/}\sqrt {\mathrm {Hz}} , and a dynamic range of 72 dB. We have employed our pulsed-OPM MSI system for measuring the magnetic field map of a test coil structure. The coils are moved across the array in an indexed fashion to measure the magnetic field over an area larger than the array. The captured magnetic field maps show excellent agreement with the simulation results. Assuming a 2-D current distribution, we have solved the inverse problem using the measured magnetic field maps, and the reconstructed current distribution image is compared with that of the simulation.

More Details

A 20-channel magnetoencephalography system based on optically pumped magnetometers

Physics in Medicine and Biology

Borna, Amir B.; Carter, T.R.; Colombo, Anthony P.; Jau, Yuan-Yu J.; Berry, Christopher; Mckay, Jim; Stephen, Julia; Weisend, Michael; Schwindt, Peter S.

We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.

More Details

Four-channel optically pumped atomic magnetometer for magnetoencephalography

Optics Express

Colombo, Anthony P.; Carter, T.R.; Borna, Amir B.; Jau, Yuan-Yu J.; Johnson, Cort N.; Dagel, Amber L.; Schwindt, Peter S.

We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization.

More Details

Ultra-fast diffractive optical micro-trap arrays for neutral atom quantum computing

Proceedings of SPIE - The International Society for Optical Engineering

Kemme, S.A.; Brady, G.R.; Ellis, A.R.; Wendt, J.R.; Peters, D.W.; Biedermann, Grant B.; Carter, T.R.; Samora, S.; Isaacs, J.A.; Ivanov, V.V.; Saffman, M.

We design and fabricate arrays of diffractive optical elements (DOEs) to realize neutral atom micro-traps for quantum computing. We initialize a single atom at each site of an array of optical tweezer traps for a customized spatial configuration. Each optical trapping volume is tailored to ensure only one or zero trapped atoms. Specifically designed DOEs can define an arbitrary optical trap array for initialization and improve collection efficiency in readout by introducing high-numerical aperture, low-profile optical elements into the vacuum environment. We will discuss design and fabrication details of ultra-fast collection DOEs integrated monolithically and coaxially with tailored DOEs that establish an optical array of micro-traps through far-field propagation. DOEs, as mode converters, modify the lateral field at the front focal plane of an optical assembly and transform it to the desired field pattern at the back focal plane of the optical assembly. We manipulate the light employing coherent or incoherent addition with judicious placement of phase and amplitude at the lens plane. This is realized through a series of patterning, etching, and depositing material on the lens substrate. The trap diameter, when this far-field propagation approach is employed, goes as 2.44λF/#, where the F/# is the focal length divided by the diameter of the lens aperture. The 8-level collection lens elements in this presentation are, to our knowledge, the fastest diffractive elements realized; ranging from F/1 down to F/0.025. © 2012 SPIE.

More Details

Arrayed resonant subwavelength gratings : LDRD 38618 final report

Kemme, S.A.; Peters, D.W.; Wendt, J.R.; Carter, T.R.; Samora, S.; Hadley, G.R.; Warren, M.E.; Grotbeck, Carter L.

This report describes a passive, optical component called resonant subwavelength gratings (RSGs), which can be employed as one element in an RSG array. An RSG functions as an extremely narrow wavelength and angular band reflector, or mode selector. Theoretical studies predict that the infinite, laterally-extended RSG can reflect 100% of the resonant light while transmitting the balance of the other wavelengths. Experimental realization of these remarkable predictions has been impacted primarily by fabrication challenges. Even so, we will present large area (1.0mm) RSG reflectivity as high as 100.2%, normalized to deposited gold. Broad use of the RSG will only truly occur in an accessible micro-optical system. This program at Sandia is a normal incidence array configuration of RSGs where each array element resonates with a distinct wavelength to act as a dense array of wavelength- and mode-selective reflectors. Because of the array configuration, RSGs can be matched to an array of pixels, detectors, or chemical/biological cells for integrated optical sensing. Micro-optical system considerations impact the ideal, large area RSG performance by requiring finite extent devices and robust materials for the appropriate wavelength. Theoretical predictions and experimental measurements are presented that demonstrate the component response as a function of decreasing RSG aperture dimension and off-normal input angular incidence.

More Details

Nanostructured Materials Integrated in Microfabricated Optical Devices

Sasaki, Darryl Y.; Samora, S.; Warren, M.E.; Sinclair, Michael B.; Last, Julie A.; Bondurant, Bruce B.; Brinker, C.J.; Kemme, S.A.; Wendt, J.R.; Carter, T.R.

This project combined nanocomposite materials with microfabricated optical device structures for the development of microsensor arrays. For the nanocomposite materials we have designed, developed, and characterized self-assembling, organic/inorganic hybrid optical sensor materials that offer highly selective, sensitive, and reversible sensing capability with unique hierarchical nanoarchitecture. Lipid bilayers and micellar polydiacetylene provided selective optical response towards metal ions (Pb(II), Hg(II)), a lectin protein (Concanavalin A), temperature, and organic solvent vapor. These materials formed as composites in silica sol-gels to impart physical protection of the self-assembled structures, provide a means for thin film surface coatings, and allow facile transport of analytes. The microoptical devices were designed and prepared with two- and four-level diffraction gratings coupled with conformal gold coatings on fused silica. The structure created a number of light reflections that illuminated multiple spots along the silica surface. These points of illumination would act as the excitation light for the fluorescence response of the sensor materials. Finally, we demonstrate an integrated device using the two-level diffraction grating coupled with the polydiacetylene/silica material.

More Details
Results 1–25 of 28
Results 1–25 of 28