The purpose of this report is to document updates on the apparatus to simulate commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal, such as fuel degradation; cladding corrosion, embrittlement, or breaching; and the creation of a flammable environment via radiolysis of water. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents details on the quantification of residual water in the Advanced Drying Cycle Simulator (ADCS), an apparatus built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. The ADCS is outfitted with thermocouples to measure the thermal response of the ADCS to simulated decay heats and internal helium fill pressures relevant to commercial drying procedures. The ADCS is also instrumented with pressure transducers to measure the pressures and vacuum levels observed during simulated commercial drying. The most unique instrumentation used for quantifying residual water in the ADCS is a Hiden Analytical HPR-30 mass spectrometer (MS), which measures gas compositions of the ADCS internal free volume, based on partial pressures calculated from relative proportions of gas molecules detected by the MS. This report details the methodology used to implement MS measurements in quantifying residual water in the ADCS. This methodology includes the calibration of the HPR-30 MS to a Buck Research Instruments CR-4 chilled mirror hygrometer, which itself is calibrated to a NIST-traceable standard. Data collected by both the MS and the chilled mirror hygrometer from water/helium mixtures ranging from 150 to 500,000 ppmv water in helium were used to generate calibration curves, establishing a source of verification of MS measured water contents. Details regarding water content measurement uncertainties are included in this report, defining the accuracy and verifiability of the HPR-30 MS in measuring residual water content in simulated dry storage canister environments.
The United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign seeks to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. The evaluation of long-term performance of the repository may need to consider the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential for this situation to occur in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal. DOE has been considering disposing of SNF in DPCs to avoid the costs and worker dose associated with repackaging the SNF currently stored in DPCs into repository-specific canisters. This report examines the consequences of postclosure criticality to provide technical support to DOE in developing a disposal plan.
The purpose of this report is to document updates on the apparatus to simulate commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents fiscal year 2023 (FY23) updates on the Advanced Drying Cycle Simulator (ADCS). This apparatus was built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. These waterproof heaters are the next generation design to heater rods developed and tested at Sandia National Laboratories in FY20. In FY23, a series of four simulated commercial drying tests was completed. This report presents the temperature and pressure histories of the drying tests as well as axial temperature profiles that can be compared to data from the Electric Power Research Institute (EPRI) High Burnup Demonstration TN-32B cask. Water content measurements and dew point calculations from a Hiden Analytical HPR-30 mass spectrometer are also presented in this report. Due to familiarization with this first-of-a-kind system, refinements to equipment calibration and test procedures have been identified to better match commercial drying cycles for future simulated tests. However, the presented data demonstrate the successful construction and operation of a viable research platform for quantifying residual water content closely approaching that expected in dry storage canisters during commercial drying procedures.
This report describes research and development (R&D) activities conducted during Fiscal Year 2023 (FY23) in the Advanced Fuels and Advanced Reactor Waste Streams Strategies work package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). This report is focused on evaluating and cataloguing Advanced Reactor Spent Nuclear Fuel (AR SNF) and Advanced Reactor Waste Streams (ARWS) and creating Back-end Nuclear Fuel Cycle (BENFC) strategies for their disposition. The R&D team for this report is comprised of researchers from Sandia National Laboratories and Enviro Nuclear Services, LLC.
The purpose of this report is to document updates on testing of the apparatus built to simulate commercial drying procedures for spent nuclear fuel at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system during subsequent storage and disposal. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates well-designed investigations of drying process efficacy and water retention that incorporate relevant physics and well-controlled boundary conditions. This report documents testing updates for the Advanced Drying Cycle Simulator (ADCS). This apparatus was built to simulate commercial drying procedures and quantify the amount of residual water remaining in a pressurized water reactor (PWR) fuel assembly after drying. The ADCS was constructed with a prototypic 17×17 PWR fuel skeleton and waterproof heater rods to simulate decay heat. These waterproof heaters are the next generation design to heater rods developed and tested at Sandia National Laboratories in FY20. This report describes preliminary testing of the ADCS through measurement and analysis of the thermal response of the system to a subset of commercial drying conditions that exclude the introduction of water, namely simulated decay heats and pressures relevant to commercial drying. This test series, referred to as a “dry” test series in this report, spans three uniform waterproof heater rod powers (representing spent fuel decay heats), four helium fill pressures, and six vacuum levels. This test series was conducted to cover the range of expected ADCS testing conditions for upcoming “wet” testing, where water will be introduced and a simulated commercial drying cycle will be performed. The dry test conditions were derived from the commercial drying conditions seen in the High Burnup Demonstration and the vacuum drying conditions chosen for a smaller scale Dashpot Drying Apparatus tested at Sandia National Laboratories in FY22. For a given uniform power and pressure/vacuum level, the ADCS was operated at constant power and pressure and allowed to reach steady state conditions. The thermal data obtained from these tests were analyzed, and the results can inform computational models built to simulate commercial drying processes by providing baseline thermal data prior to the introduction of water. Following the preliminary dry tests, a test plan for the ADCS will be developed to implement a drying procedure that begins with the introduction of water to the system and is based on measurements from the drying process used for the High Burnup Demonstration Project. While applying power to the simulated fuel rods, this procedure is expected to consist of filling the ADCS vessel with water, draining the water with applied pressure and multiple helium blowdowns, evacuating additional water with a vacuum drying sequence at successively lower pressures, and backfilling the vessel with helium. Additional investigations are expected to feature failed fuel rod simulators with engineered cladding defects and guide tubes with obstructed dashpots to challenge the drying system with multiple water retention sites. The data from these investigations is expected to inform the efficacy of commercial drying operations through the quantification of residual water in a prototypic-length dry storage canister.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (Sassani et al. 2021). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2022 advances of the Geologic Disposal Safety Assessment (GDSA) performance assessment (PA) development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to assess probabilistically the performance of generic disposal options and generic sites. The modeling capability under development is called GDSA Framework (pa.sandia.gov). GDSA Framework is a coordinated set of codes and databases designed for probabilistically simulating the release and transport of disposed radionuclides from a repository to the biosphere for post-closure performance assessment. Primary components of GDSA Framework include PFLOTRAN to simulate the major features, events, and processes (FEPs) over time, Dakota to propagate uncertainty and analyze sensitivities, meshing codes to define the domain, and various other software for rendering properties, processing data, and visualizing results.
The purpose of this report is to document updates to the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents testing updates for the Dashpot Drying Apparatus (DDA), an apparatus constructed at a reduced scale with multiple Pressurized Water Reactor (PWR) fuel rod surrogates and a single guide tube dashpot. This apparatus is fashioned from a truncated 5×5 section of a prototypic 17×17 PWR fuel skeleton and includes the lowest segment of a single guide tube, often referred to as the dashpot region. The guide tube in this assembly is open and allows for insertion of a poison rod (neutron absorber) surrogate.
A new small-scale pressure vessel with a 5×5 fuel assembly and axially truncated PWR hardware was created to simulate commercial vacuum drying processes. This test assembly, known as the Dashpot Drying Apparatus, was built to focus on the drying of a single PWR dashpot and surrounding fuel. Drying operations were simulated for three tests with the DDA based on the pressure and temperature histories observed in the HBDP. All three tests were conducted with an empty guide tube. One test was performed with deionized water as the fill fluid. The other two tests used 0.2 M boric acid as the fill fluid to accurately simulate spent fuel pool conditions. These tests proved the capability of the DDA to mimic commercial drying processes on a limited scale and detect the presence of bulk and residual water. Furthermore, for all tests, pressure remained below the 0.4 kPa (3 Torr) rebound threshold for the final evacuation step in the drying procedure. Results indicate that after bulk fluid is removed from the pressure vessel, residual water is verifiably measured through confirmatory measurements of pressure and water content using a mass spectrometer. The final pressure rebound behaviors for the three tests conducted were well below the established regulatory limit of less than 0.4 kPa (3 Torr) within 30 minutes of isolation. The water content measurements across all tests showed that despite observing high water content within the DDA vessel at the beginning of the vacuum isolations, the water content drastically drops to below 1,200 ppmv after the isolations were conducted. The data and operational experience from these tests will guide the next evolution of experiments on a prototypic-length scale with multiple surrogate rods in a full 17×17 PWR assembly. The insight gained through these investigations is expected to support the technical basis for the continued safe storage of spent nuclear fuel into long term operations.
The Material Protection, Accounting, and Control Technologies program utilizes modeling and simulation to assess Material Control and Accountability (MC&A) concerns for a variety of nuclear facilities. Single analyst tools allow for rapid design and evaluation of advanced approaches for new and existing nuclear facilities. A low enriched uranium (LEU) fuel conversion and fabrication facility simulator is developed to assist with MC&A for existing facilities. Measurements are added to the model (consistent with current best practices). Material balance calculations and statistical tests are also added to the model. In addition, scoping work is performed for developing a single stage aqueous reprocessing model. Preliminary results are presented and discussed, and next steps outlined.
Currently a set of 71 radionuclides are accounted for in off-site consequence analysis for LWRs. Radionuclides of dose consequence are expected to change for non-LWRs, with radionuclides of interest being type-specific. This document identifies an expanded set of radionuclides that may need to be accounted for in multiple non-LWR systems: high temperature gas reactors (HTGRs); fluoride-salt-cooled high-temperature reactors (FHRs); thermal-spectrum fluoride-based molten salt reactors (MSRs); fast-spectrum chloride-based MSRs; and, liquid metal fast reactors with metallic fuel (LMRs) Specific considerations are provided for each reactor type in Chapter 2 through Chapter 5, and a summary of all recommendations is provided in Chapter 6. All identified radionuclides are already incorporated within the MACCS software, yet the development of tritium-specific and carbon-specific chemistry models are recommended.