Publications

Results 34201–34400 of 99,299

Search results

Jump to search filters

CEA SMAD 2016 Digitizer Evaluation

Merchant, Bion J.

Sandia National Laboratories has tested and evaluated an updated SMAD digitizer, developed by the French Alternative Energies and Atomic Energy Commission (CEA). The SMAD digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The SMAD digitizers have been updated since their last evaluation by Sandia to improve their performance when recording at a sample rate of 20 Hz for infrasound applications and 100 Hz for hydro-acoustic seismic stations. This evaluation focuses primarily on the 20 Hz and 100 Hz sample rates. The SMAD digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test- Ban-Treaty Organization (CTBTO).

More Details

The influence of interfacial slip on two-phase flow in rough pores

Water Resources Research

Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; Noble, David R.

The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.

More Details

Modeling Chemical Evolution of Cement Seals

Shortt, Hugh A.

The prevention of the migration of fluids is a field of study with high demand in both the private industry as well as in government research and development. More particularly, the prevention of carbon dioxide (CO2) migration or return to the atmosphere. This, in turn, causes measurably significant atmospheric climate change that results in immense damage to the environment. In this study, the interaction between 0.5 molar sodium chloride (NaCl) brine solution and a cement interface over extended periods of time is computationally investigated, as well as the interaction of a 33 millimolar CO2 dissolved in the afore-mentioned brine solution for the same period of time. A 2-meter-long saturated brine solution reacted with an 800-meter-long cement block in PFLOTRAN, an open-source reactive flow transport software whose output was later visualized in ParaView, a separate, open-source, visualization software.

More Details

U.S. Department of Energy Reference Model Program RM1: Experimental Results

Hill, Craig; Neary, Vincent S.; Gunawan, Budi; Guala, Michele; Sotiropoulos, Fotis

The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing nonproprietary Reference Models (RM) of MHK technology designs as study objects for opensource research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM1) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device with counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.

More Details

Bounding the moment deficit rate on crustal faults using geodetic data: Methods

Journal of Geophysical Research: Solid Earth

Maurer, Jeremy; Segall, Paul; Bradley, Andrew M.

The geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, but can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.

More Details

Adjoint-based optimization of mechanical performance in polycrystalline materials and structures through texture control

Gu, Grace; Brown, Judith A.; Bishop, Joseph E.

The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities of interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.

More Details

Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed

Cipiti, Benjamin B.

The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generate performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.

More Details

LAMMPS Project Report for the Trinity KNL Open Science Period

Moore, Stan G.; Thompson, A.P.; Wood, Mitchell

LAMMPS is a classical molecular dynamics code (lammps.sandia.gov) used to model materials science problems at Sandia National Laboratories and around the world. LAMMPS was one of three Sandia codes selected to participate in the Trinity KNL (TR2) Open Science period. During this period, three different problems of interest were investigated using LAMMPS. The first was benchmarking KNL performance using different force field models. The second was simulating void collapse in shocked HNS energetic material using an all-atom model. The third was simulating shock propagation through poly-crystalline RDX energetic material using a coarse-grain model, the results of which were used in an ACM Gordon Bell Prize submission. This report describes the results of these simulations, lessons learned, and some hardware issues found on Trinity KNL as part of this work.

More Details
Results 34201–34400 of 99,299
Results 34201–34400 of 99,299