Publications

Results 1–25 of 71

Search results

Jump to search filters

SIERRA Code Coupling Module: Arpeggio User Manual - Version 5.18

Clausen, Jonathan C.; Brunini, Victor B.; Collins, Lincoln; Knaus, Robert C.; Kucala, Alec K.; Lin, Stephen; Matula, Neil M.; Moser, Daniel M.; Phillips, Malachi P.; Ransegnola, Thomas M.; Subia, Samuel R.; Vasyliv, Yaroslav V.; Voskuilen, Tyler V.; Smith, Timothy A.; Lamb, Justin M.

The SNL Sierra Mechanics code suite is designed to enable simulation of complex multiphysicsscenarios. The code suite is composed of several specialized applications which can operate either instandalone mode or coupled with each other. Arpeggio is a supported utility that enables loose couplingof the various Sierra Mechanics applications by providing access to Framework services that facilitatethe coupling.

More Details

SIERRA Multimechanics Module: Aria Verification Manual - Version 5.18

Clausen, Jonathan C.; Brunini, Victor B.; Collins, Lincoln; Knaus, Robert C.; Kucala, Alec K.; Lin, Stephen; Matula, Neil M.; Moser, Daniel M.; Phillips, Malachi P.; Ransegnola, Thomas M.; Subia, Samuel R.; Vasyliv, Yaroslav V.; Voskuilen, Tyler V.; Smith, Timothy A.; Carnes, Brian C.; Lamb, Justin M.

Presented in this document is a portion of the tests that exist in the Sierra Thermal/Fluids verificationtest suite. Each of these tests is run nightly with the Sierra/TF code suite and the results of the testchecked under mesh refinement against the correct analytic result. For each of the tests presented in thisdocument the test setup, derivation of the analytic solution, and comparison of the code results to theanalytic solution is provided.

More Details

SIERRA Low Mach Module: Fuego Verification Manual - Version 5.18

Clausen, Jonathan C.; Brunini, Victor B.; Collins, Lincoln; Knaus, Robert C.; Kucala, Alec K.; Lin, Stephen; Matula, Neil M.; Moser, Daniel M.; Phillips, Malachi P.; Ransegnola, Thomas M.; Subia, Samuel R.; Vasyliv, Yaroslav V.; Voskuilen, Tyler V.; Smith, Timothy A.; Lamb, Justin M.

The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of theASC fire environment simulation project. The fire environment simulation project is directed atcharacterizing both open large-scale pool fires and building enclosure fires. Fuego represents theturbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, andabsorption coefficient model portion of the simulation software.

More Details

FY20 ASC IC L2 Milestone 7180: Performance Portability of SIERRA Mechanics Applications to ATS-1 and ATS-2. Executive Summary

Mosby, Matthew D.; Clausen, Jonathan C.; Crane, Nathan K.; Drake, Richard R.; Thomas, Jesse D.; Williams, Alan B.; Pierson, Kendall H.

The overall goal of this work was to accelerate simulations supporting the nuclear deterrence (ND) mission through improved performance of key algorithms in the ASC IC Sierra multi-physics application suite. This work focused on porting and optimizing algorithms for the graphics processing units (GPU) on the second ASC advanced technology system (ATS-2), while maintaining or improving performance on commodity technology systems (CTS) and ATS-1. Furthermore, these algorithmic developments used the ASC developed Kokkos performance portability abstraction library to maintain high performance across platforms using identical code, and enable sustainable reduced-cost migration and performance optimization to emerging hardware.

More Details

Gas-Induced Motion of a Piston in a Vibrated Liquid-Filled Housing

Journal of Fluids Engineering, Transactions of the ASME

Torczynski, J.R.; O'Hern, Timothy J.; Clausen, Jonathan C.; Koehler, Timothy P.

Models and experiments are developed to investigate how a small amount of gas can cause large rectified motion of a piston in a vibrated liquid-filled housing when piston drag depends on piston position so that damping is nonlinear even for viscous flow. Two bellows serve as surrogates for the upper and lower gas regions maintained by Bjerknes forces. Without the bellows, piston motion is highly damped. With the bellows, the piston, the liquid, and the two bellows move together so that almost no liquid is forced through the gaps between the piston and the housing. This Couette mode has low damping and a strong resonance: the piston and the liquid vibrate against the spring formed by the two bellows (like the pneumatic spring formed by the gas regions). Near this resonance, the piston motion becomes large, and the nonlinear damping produces a large rectified force that pushes the piston downward against its spring suspension. A recently developed model based on quasi-steady Stokes flow is applied to this system. A drift model is developed from the full model and used to determine the equilibrium piston position as a function of vibration amplitude and frequency. Corresponding experiments are performed for two different systems. In the two-spring system, the piston is suspended against gravity between upper and lower springs. In the spring-stop system, the piston is pushed up against a stop by a lower spring. Model and experimental results agree closely for both systems and for different bellows properties.

More Details

A unified analysis of nano-to-microscale particle dispersion in tubular blood flow

Physics of Fluids

Liu, Z.; Clausen, Jonathan C.; Rao, Rekha R.; Aidun, C.K.

Transport of solid particles in blood flow exhibits qualitative differences in the transport mechanism when the particle varies from nanoscale to microscale size comparable to the red blood cell (RBC). The effect of microscale particle margination has been investigated by several groups. Also, the transport of nanoscale particles (NPs) in blood has received considerable attention in the past. This study attempts to bridge the gap by quantitatively showing how the transport mechanism varies with particle size from nano-to-microscale. Using a three-dimensional (3D) multiscale method, the dispersion of particles in microscale tubular flows is investigated for various hematocrits, vessel diameters, and particle sizes. NPs exhibit a nonuniform, smoothly dispersed distribution across the tube radius due to severe Brownian motion. The near-wall concentration of NPs can be moderately enhanced by increasing hematocrit and confinement. Moreover, there exists a critical particle size (∼1 μm) that leads to excessive retention of particles in the cell-free region near the wall, i.e., margination. Above this threshold, the margination propensity increases with the particle size. The dominance of RBC-enhanced shear-induced diffusivity (RESID) over Brownian diffusivity (BD) results in 10 times higher radial diffusion rates in the RBC-laden region compared to that in the cell-free layer, correlated with the high margination propensity of microscale particles. This work captures the particle size-dependent transition from Brownian-motion dominant dispersion to margination using a unified 3D multiscale computational approach and highlights the linkage between the radial distribution of RESID and the margination of particles in confined blood flows.

More Details

Nanoparticle diffusion in sheared cellular blood flow

Journal of Fluid Mechanics

Liu, Zixiang; Clausen, Jonathan C.; Rao, Rekha R.; Aidun, Cyrus K.

Using a multiscale blood flow solver, the complete diffusion tensor of nanoparticles (NPs) in sheared cellular blood flow is calculated over a wide range of shear rate and haematocrit. In the short-time regime, NPs exhibit anomalous dispersive behaviors under high shear and high haematocrit due to the transient elongation and alignment of the red blood cells (RBCs). In the long-time regime, the NP diffusion tensor features high anisotropy. Particularly, there exists a critical shear rate around which the shear-rate dependence of the diffusivity tensor changes from linear to nonlinear scale. Above the critical shear rate, the cross-stream diffusivity terms vary sublinearly with shear rate, while the longitudinal term varies superlinearly. The dependence on haematocrit is linear in general except at high shear rates, where a sublinear scale is found for the vorticity term and a quadratic scale for the longitudinal term. Through analysis of the suspension microstructure and numerical experiments, the nonlinear haemorheological dependence of the NP diffusion tensor is attributed to the streamwise elongation and cross-stream contraction of RBCs under high shear, quantified by a capillary number. The RBC size is shown to be the characteristic length scale affecting the RBC-enhanced shear-induced diffusion (RESID), while the NP submicrometre size exhibits negligible influence on the RESID. Based on the observed scaling behaviours, empirical correlations are proposed to bridge the NP diffusion tensor to specific shear rate and haematocrit. The characterized NP diffusion tensor provides a constitutive relation that can lead to more effective continuum models to tackle large-scale NP biotransport applications.

More Details

Nanoparticle transport in cellular blood flow

Computers and Fluids

Liu, Zixiang; Zhu, Yuanzheng; Rao, Rekha R.; Clausen, Jonathan C.; Aidun, Cyrus K.

The biotransport of the intravascular nanoparticle (NP) is influenced by both the complex cellular flow environment and the NP characteristics. Being able to computationally simulate such intricate transport phenomenon with high efficiency is of far-reaching significance to the development of nanotherapeutics, yet challenging due to large length-scale discrepancies between NP and red blood cell (RBC) as well as the complexity of nanoscale particle dynamics. Recently, a lattice-Boltzmann (LB) based multiscale simulation method has been developed to capture both NP–scale and cell–level transport phenomenon at high efficiency. The basic components of this method include the LB treatment for the fluid phase, a spectrin-link method for RBCs, and a Langevin dynamics (LD) approach to capturing the motion of the suspended NPs. Comprehensive two-way coupling schemes are established to capture accurate interactions between each component. The accuracy and robustness of the LB–LD coupling method are demonstrated through the relaxation of a single NP with initial momentum and self-diffusion of NPs. This approach is then applied to study the migration of NPs in micro-vessels under physiological conditions. It is shown that Brownian motion is most significant for the NP distribution in 20μm venules. For 1 ∼ 100 nm particles, the Brownian diffusion is the dominant radial diffusive mechanism compared to the RBC-enhanced diffusion. For ∼ 500 nm particles, the Brownian diffusion and RBC-enhanced diffusion are comparable drivers for the particle radial diffusion process.

More Details

Application of Performance Analysis Tools on SNL ASC Codes

Agelastos, Anthony M.; Pase, Douglas M.; Amspaugh, Kathleen A.; Dinge, Dennis D.; Haskell, Karen H.; Ice, Lisa I.; Lamb, Justin M.; Rajan, Mahesh R.; Shaw, Ryan P.; Stevenson, Joel O.; Brunini, Victor B.; Clausen, Jonathan C.; Crawford, Martin J.; Valdez, Greg D.

This milestone 1) exercised a broad set of performance profiling and analysis tools, including tools whose development has been promoted by the ASC program; 2) exercised the tools on two different SNL ASC codes, one Sierra code (Sierra/Aria, a C++ codebase) and one RAMSES code (ITS, a Fortran codebase); and 3) exercised the tools on multiple platforms, including the CTS-1 (e.g., Serrano) and ATS-1 Trinity (e.g., Mutrino) platforms. The milestone generated a plethora of strong and weak scaling, trend and profile data for multiple versions and problem cases for each of the two codes. A wealth of experience was gained with the various tools that included identification of problems, an improved understanding of feature sets, enhanced usage documentation, and insights for future tool-development. Results are provided from a large number and variety of performance analysis runs with the target codes, together with instructions for how to make use of the tools with the codes.

More Details

FY17 ASC P&EM L2 Milestone 6009: Demonstrate Thread Scalability within Aria on Both Sides of Trinity

Clausen, Jonathan C.

The use of next-generation platforms (NGPs), also known as advanced technology systems (ATS), that incorporate many-core and heterogeneous architectures for scientific computing represent a tectonic shift in computing hardware design that will require massive development work within the Sierra applications to harness these systems to their full potential. The completion of this milestone represents a first step towards this effort by threading many of the computational kernels within Sierra/Aria.

More Details
Results 1–25 of 71
Results 1–25 of 71