Middleton, Bobby M.; Reyes, Gustavo A.; Harrison, Thomas J.; Burli, Pralhad; Foss, Andrew; Huning, Alexander; Yadav, Vaibhav; Drennen, Thomas
Advanced Reactor and Small Modular Reactor (AR/SMR) designs have the potential to provide clean, reliable baseload energy. Ensuring the capability to deploy these reactors in an economically viable fashion is of interest to industry. A large portion of the expected operating costs of AR/SMRs involves the security of the plant. Security by Design (SeBD) is the practice of including features in the design and construction of the site, with the intent to decrease the operating costs related to security. Quantifying the increase or decrease in the overall lifetime cost to the plant as a result of SeBD is of paramount importance in understanding the disadvantages and benefits of such activities. The National Nuclear Security Administration’s (NNSA) Office of International Nuclear Security (INS) is funding the development of a methodology whereby the capital expenses and operating expenses, as well as the physical security effectiveness, of SeBD can be quantified for AR/SMRs. This report is an interim report on the progress of the work performed by Sandia National Laboratories (SNL), Idaho National Laboratory, and Oak Ridge National Laboratory (ORNL). It is the second annual report on this work.
Sandia National Laboratories (SNL) is developing a cooling technology concept the Sandia National Laboratories Natural Circulation Cooler (SNLNCC) that has potential to greatly improve the economic viability of hybrid cooling for power plants. The SNLNCC is a patented technology that holds promise for improved dry heat rejection capabilities when compared to currently available technologies. The cooler itself is a dry heat rejection device, but is conceptualized here as a heat exchanger used in conjunction with a wet cooling tower, creating a hybrid cooling system for a thermoelectric power plant. The SNLNCC seeks to improve on currently available technologies by replacing the two-phase refrigerant currently used with either a supercritical fluid such as supercritical CO2 (sCO2) or a zeotropic mixture of refrigerants. In both cases, the heat being rejected by the water to the SNLNCC would be transferred over a range of temperatures, instead of at a single temperature as it is in a thermosyphon. This has the potential to improve the economics of dry heat rejection performance in three ways: decreasing the minimum temperature to which the water can be cooled, increasing the temperature to which air can be heated, and increasing the fraction of the year during which dry cooling is economically viable. This paper describes the experimental basis and the current state of the SNLNCC.
Water management has become critical for thermoelectric power generation in the US. Increasing demand for scarce water resources for domestic, agricultural, and industrial use affects water availability for power plants. In particular, the population in the Southwestern part of the US is growing and water resources are over-stressed. The engineering and management teams at the Palo Verde Generating Station (PV) in the Sonoran Desert have long understood this problem and began a partnership with Sandia National Laboratories in 2017 to develop a long-Term water strategy for PV. As part of this program, Sandia and Palo Verde staff have developed a comprehensive software tool that models all aspects of the PV (plant cooling) water cycle. The software tool the Palo Verde Water Cycle Model (PVWCM) tracks water operations from influent to the plant through evaporation in one of the nine cooling towers or one of the eight evaporation ponds. The PVWCM has been developed using a process called System Dynamics. The PVWCM is developed to allow scenario comparison for various plant operating strategies.
Sandia National Laboratories has built and successfully tested a dynamic simulation technoeconomic model of the Palo Verde Generating Station that is now being updated to help other US power plants improve operations. Palo Verde, located west of Phoenix, Arizona, is the largest electricity generator in the US at 4 GW. Palo Verde uses — 60 million gallons per day of treated wastewater from Phoenix to cool reactors, and disposes of blowdown in evaporation ponds. The model built for Palo Verde numerically evaluates the economic impact of changing, for example, alternative cooling technologies, water usage and treatment, and influent water chemistry, and is based on detailed accounting of mass, energy, and cash flows.
Nuclear power offers the promise of long-term electrical power for remote areas. Recent advances in passive safety and long-life cores make a reactor that can be operated autonomously for 20 years or more a real possibility. This white paper discusses a reactor concept that offers the potential for further development, resulting in a permanently hermetically-sealed "nuclear cartridge." The term "nuclear cartridge" is meant to imply a nuclear energy source that can be inserted into a site and operated autonomously until its energy has been depleted, then withdrawn and replaced by another cartridge. The concept can be scaled for various sizes, ranging from about 1 megawatt-electric (MWe) to about 100 MWe. The paper also discusses the concept of Integrated Safety, Operations, Security, and Safeguards (ISOSS) by design as it applies to this reactor design. Finally, a discussion of smart grids and how they can benefit the transfer of power to the end user is included. The Nuclear Cartridge concept has been developed with the following characteristics in mind: highly reliable autonomous operation coupled with international monitoring, requiring minimal on-site operations personnel; walkaway passively safe design; cartridge replacement cycle on the order of 20 years; load following capability; physical security by design requiring minimal security personnel during operations; and proliferation resistance by design. As illustrated in figure 1, integrating the reactor with advanced power conversion, smart grids, and other sources of energy results in a resilient and sustainable energy source.
This letter report signals the end of the NMSBA project to help AEgis Technologies (AEGis) find a way to solve a coupled heat transfer equation for a laser-heated Silicon wafer. Accompanying this letter report is a MATLAB live script that documents the work done to date and provides a first attempt at a solution. The scope of work provided for Sandia National Laboratories (SNL) to document the problem in a general form in this phase of the work, with the goal of applying for additional funding in Calendar Year 2020 to attempt a complete solution. SNL staff analytically solved the differential heat equation and found solutions that reproduce reasonable shapes for heat flux. However, the required information to provide a complete solution is not available.
ASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
Supercritical carbon dioxide (sCO2) Brayton power cycles have the potential to significantly improve the economic viability of concentrating solar power (CSP) plants by increasing the thermal to electric conversion efficiency from around 35% using high-temperature steam Rankine systems to above 45% depending on the cycle configuration. These systems are the most likely path toward achieving the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) SunShot targets for CSP tower thermal to electric conversion efficiency above 50% with dry cooling to air at 40 °C and a power block cost of less than 900 $/kWe. Many studies have been conducted to optimize the performance of various sCO2 Brayton cycle configurations in order to achieve high efficiency, and a few have accounted for drivers of cost such as equipment size in the optimization, but complete techno-economic optimization has not been feasible because there are no validated models relating component performance and cost. Reasonably accurate component cost models exist from several sources for conventional equipment including turbines, compressors, and heat exchangers for use in rough order of magnitude cost estimates when assembling a system of conventional equipment. However, cost data from fabricated equipment relevant to sCO2 Brayton cycles is very limited in terms of both supplier variety and performance level with most existing data in the range of 1 MWe power cycles or smaller systems, a single completed system around 7 MWe by Echogen Power Systems, and numerous ROM estimates based on preliminary designs of equipment for 10 MWe systems. This data is highly proprietary as the publication of individual data by any single supplier would damage their market position by potentially allowing other vendors to undercut their stated price rather than competing on reduced manufacturing costs. This paper describes one approach to develop component cost models in order to enable the techno-economic optimization activities needed to guide further research and development while protecting commercially proprietary information from individual vendors. Existing cost models were taken from literature for each major component used in different sCO2 Brayton cycle configurations and adjusted for their magnitude to fit the limited vendor cost data and estimates available. A mean fit curve was developed for each component and used to calculate updated cost comparisons between previously-reviewed sCO2 Brayton cycle configurations for CSP applications including simple recuperated, recompression, cascaded, and mixed-gas combined bifurcation with intercooling cycles. These fitting curves represent an average of the assembled vendor data without revealing any individual vendor cost, and maintain the scaling behavior with performance expected from similar equipment found in literature.
Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)’s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.
Middleton, Bobby M.; Boland, Thomas R.; Schlafli, William E.; Landrey, Bruce T.
This is the final report of the Small Modular Reactor (SMR) Suitability study by Sandia National Laboratories and the Scitor Team (Scitor Corporation and Landrey & Company). SMRs are being considered by the U.S. government as a clean energy option that can meet the economic, environmental and energy security goals of the country. This report was sponsored by the US Department of Energy (DOE) under the SMR Licensing Technical Support program, of which one of the goals is to advance the commercial viability of domestic SMR designs. The study reflects the intent of the memorandum of understanding between the DOE and the Department of Defense (DoD) to enhance national energy security and demonstrate leadership in transitioning the United States (US) to a low carbon economy. This report assesses the suitability of using US-developed light water SMR technology to provide energy for Schriever Air Force Base, CO and Clear Air Force Station, AK, and for broader SMR applications to meet DoD and Federal energy needs. This report also outlines deployment scenarios to optimize the use of an SMR's capacity to meet aggregated DoD and Federal energy needs within selected regions of the US. Finally, the report includes recommendations for follow-on actions by DoD and DOE to further the development of US SMR technology and effectively address viable solutions for national energy security and clean energy goals.
This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation