Publications

12 Results

Search results

Jump to search filters

Noise Erasure in Quantum-Limited Current Amplifiers

Harris, Charles T.; Lu, Tzu-Ming L.; Bethke, Donald T.; Lewis, Rupert; Skinner Ramos, Sueli D.

Superconducting quantum interference devices (SQUIDs) are extraordinarily sensitive to magnetic flux and thus make excellent current amplifiers for cryogenic applications. One such application of high interest to Sandia is the set-up and state read-out of quantum dot based qubits, where a qubit state is read out from a short current pulse (microseconds to milliseconds long) of approximately 100 pA, a signal that is easily corrupted by noise in the environment. A Parametric SQUID Amplifier can be high bandwidth (in the GHz range), low power dissipation (less than 1pW), and can be easily incorporated into multi-qubit systems. In this SAIL LDRD, we will characterize the noise performance of the parametric amplifier front end -- the SQUID -- in an architecture specific to current readout for spin qubits. Noise is a key metric in amplification, and identifying noise sources will allow us to optimize the system to reduce its effects, resulting in higher fidelity readout. This effort represents a critical step in creating the building blocks of a high speed, low power, parametric SQUID current amplifier that will be needed in the near term as quantum systems with many qubits begin to come on line in the next few years.

More Details

Towards Quantum-Limited Cryogenic Amplification for Multi-Qubit Platforms

Harris, Charles T.; Lu, Tzu-Ming L.; Miller, Andrew J.; Bethke, Donald T.; Lewis, Rupert

Here we present the development of the building blocks of a Josephson parametric amplifier (JPA), namely the superconducting quantum interference device (SQUID) and the inductive pick-up coil that permits current coupling from a quantum dot into the SQUID. We also discuss our efforts in making depletion mode quantum dots using delta doped GaAs quantum wells. Because quantum dot based spin qubits utilize very low-level (~10 - 100pA), short duration (1ms - 1μs) current signals for state preparation and readout, these systems require close proximity cryogenic amplification to prevent signal corruption. Common amplification methods in these semiconductor quantum dots rely on heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs) to amplify the readout signal from a single qubit. The state of the art for HBTs and HEMTs produce approximately 10µW of power when operating at high bandwidths. For few-qubit systems this level of heat dissipation is acceptable. However, for scaling up the number of qubits to several hundred or a thousand, the heat load produced in a 1 to 1 amplifier to qubit arrangement would overload the cooling capacity of a common dilution refrigerator, which typically has a cooling power of ~100µW at its base temperature. Josephson parametric amplifiers have been shown to dissipate ~1pW of power with current sensitivies on par with HBTs and HEMTs and with bandwidths 30 times that of HBTs and HEMTs, making them attractive for multi-qubit platforms. In this report we describe in detail the fabrication process flow for developing inductive pick-up coils and the fabrication and measurement of NbTiN and A1/A1Ox/A1 SQUIDs.

More Details

Role of humidity in oxidation of ultrathin GaSe

Materials Research Express (Online)

Kowalski, Brian M.; Manz, Noah; Bethke, Donald T.; Serov, Alexey; Shaner, Eric A.; Kalugin, Nikolai G.

The oxidation mechanisms of exfoliated Gallium Selenide (GaSe) are strongly influenced by humidity. We have observed that the presence of water molecules leads to formation of Ga2O3, SeO2, and Se via sequence of intermediate reactions which include generation of aqueous solution of selenic acid. Raman spectra of GaSe flakes undergoing oxidation in a humidity-controlled environment reveal formation of selenic acid-related species causing Raman scattering signal in the regions around 830 cm-1 and around 1230 cm-1. This observation sheds light on the path of chemical reactions, going via an intermediate stage of formation of gallium hydroxide and selenium oxide-water complexes with further decompositions of these compounds to Ga2O3, SeO2, and amorphous selenium.

More Details

Enhancement-mode two-channel triple quantum dot from an undoped Si/Si0.8Ge0.2 quantum well hetero-structure

Applied Physics Letters

Studenikin, S.A.; Gaudreau, L.; Kataoka, K.; Austing, D.G.; Lu, Tzu-Ming L.; Luhman, Dwight R.; Bethke, Donald T.; Wanke, Michael W.; Lilly, Michael L.; Carroll, Malcolm; Sachrajda, A.S.

Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si0.8Ge0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regions in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.

More Details

High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter

Optica

Woolf, David N.; Kadlec, Emil A.; Bethke, Donald T.; Grine, Albert D.; Nogan, John N.; Cederberg, Jeffrey G.; Shaner, Eric A.; Hensley, Joel M.

Thermophotovoltaics (TPV) is the process by which photons radiated from a thermal emitter are converted into electrical power via a photovoltaic cell. Selective thermal emitters that can survive at temperatures at or above ∼1000°C have the potential to greatly improve the efficiency of TPV energy conversion by restricting the emission of photons with energies below the photovoltaic (PV) cell bandgap energy. In this work, we demonstrated TPV energy conversion using a high-temperature selective emitter, dielectric filter, and 0.6 eV In0.68 Ga0.32 As photovoltaic cell. We fabricated a passivated platinum and alumina frequency-selective surface by conventional stepper lithography. To our knowledge, this is the first demonstration of TPV energy conversion using a metamaterial emitter. The emitter was heated to >1000°C, and converted electrical power was measured. After accounting for geometry, we demonstrated a thermal-to-electrical power conversion efficiency of 24.1 0.9% at 1055°C. We separately modeled our system consisting of a selective emitter, dielectric filter, and PV cell and found agreement with our measured efficiency and power to within 1%. Our results indicate that high-efficiency TPV generators are possible and are candidates for remote power generation, combined heat and power, and heat-scavenging applications.

More Details

Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer

Applied Physics Letters

Lu, Tzu-Ming L.; Laros, James H.; Muller, Richard P.; Nielsen, Erik N.; Bethke, Donald T.; Ten Eyck, Gregory A.; Pluym, Tammy P.; Wendt, J.R.; Dominguez, Jason J.; Lilly, Michael L.; Carroll, Malcolm; Wanke, Michael W.

Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. The device uses only a single metal-gate layer, greatly simplifying device design and fabrication.

More Details

Active Control of Nitride Plasmonic Dispersion in the Far Infrared

Shaner, Eric A.; Dyer, Gregory C.; Seng, William F.; Bethke, Donald T.; Grine, Albert D.; Baca, A.G.; Allerman, A.A.

We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

More Details
12 Results
12 Results