Publications

Results 1–25 of 83
Skip to search filters

Three-Dimensional Meta-films - A Discovery Platform for Structured Electromagnetic Materials

2020 14th International Congress on Artificial Materials for Novel Wave Phenomena, Metamaterials 2020

Burckel, David B.; Musick, Katherine M.; Resnick, Paul J.; Sinclair, Michael B.; Goldflam, Michael G.

A wall-first variant of membrane projection lithography (MPL) is introduced which yields three-dimensional meta-films; mm-scale structures with micron-scale periodicity and 3D nm-scale unit cell structure. These meta-films combine aspects of photonic crystals, metamaterials and plasmonic nano antennas in their infrared scattering behavior. We present the fabrication approach, and modeling/IR characterization results.

More Details

Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films

Optics Express

Burckel, David B.; Goldflam, Michael G.; Musick, Katherine M.; Resnick, Paul J.; Armelles, Gaspar; Sinclair, Michael B.

A complementary metal oxide semiconductor (CMOS) compatible fabrication method for creating three-dimensional (3D) meta-films is presented. In contrast to metasurfaces, meta-films possess structural variation throughout the thickness of the film and can possess a sub-wavelength scale structure in all three dimensions. Here we use this approach to create 2D arrays of cubic silicon nitride unit cells with plasmonic inclusions of elliptical metallic disks in horizontal and vertical orientations with lateral array-dimensions on the order of millimeters. Fourier transform infrared (FTIR) spectroscopy is used to measure the infrared transmission of meta-films with either horizontally or vertically oriented ellipses with varying eccentricity. Shape effects due to the ellipse eccentricity, as well as localized surface plasmon resonance (LSPR) effects due to the effective plasmonic wavelength are observed in the scattering response. The structures were modeled using rigorous coupled wave analysis (RCWA), finite difference time domain (Lumerical), and frequency domain finite element (COMSOL). The silicon nitride support structure possesses a complex in-plane photonic crystal slab band structure due to the periodicity of the unit cells. We show that adjustments to the physical dimensions of the ellipses can be used to control the coupling to this band structure. The horizontally oriented ellipses show narrow, distinct plasmonic resonances while the vertically oriented ellipses possess broader resonances, with lower overall transmission amplitude for a given ellipse geometry. We attribute this difference in resonance behavior to retardation effects. The ability to couple photonic slab modes with plasmonic inclusions enables a richer space of optical functionality for design of metamaterial-inspired optical components.

More Details

Double sided grating fabrication for high energy X-ray phase contrast imaging

Materials Science in Semiconductor Processing

Hollowell, Andrew E.; Arrington, Christian L.; Finnegan, Patrick S.; Musick, Katherine M.; Resnick, Paul J.; Volk, Steve; Dagel, Amber L.

State of the art grating fabrication currently limits the maximum source energy that can be used in lab based x-ray phase contrast imaging (XPCI) systems. In order to move to higher source energies, and image high density materials or image through encapsulating barriers, new grating fabrication methods are needed. In this work we have analyzed a new modality for grating fabrication that involves precision alignment of etched gratings on both sides of a substrate, effectively doubling the thickness of the grating. We have achieved a front-to-backside feature alignment accuracy of 0.5 µm demonstrating a methodology that can be applied to any grating fabrication approach extending the attainable aspect ratios allowing higher energy lab based XPCI systems.

More Details

Assessing the manufacturing tolerances and uniformity of CMOS compatible metamaterial fabrication

Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics

Musick, Katherine M.; Wendt, J.R.; Resnick, Paul J.; Sinclair, Michael B.; Burckel, David B.

The manufacturing tolerances of a stencil-lithography variant, membrane projection lithography, were investigated. In the first part of this work, electron beam lithography was used to create stencils with a range of linewidths. These patterns were transferred into the stencil membrane and used to pattern metallic lines on vertical silicon faces. Only the largest lines, with a nominal width of 84 nm, were resolved, resulting in 45 ± 10 nm (average ± standard deviation) as deposited with 135-nm spacing. Although written in the e-beam write software file as 84-nm in width, the lines exhibited linewidth bias. This can largely be attributed to nonvertical sidewalls inherent to dry etching techniques that cause proportionally larger impact with decreasing feature size. The line edge roughness can be significantly attributed to the grain structure of the aluminum nitride stencil membrane. In the second part of this work, the spatial uniformity of optically defined (as opposed to e-beam written) metamaterial structures over large areas was assessed. A Fourier transform infrared spectrometer microscope was used to collect the reflection spectra of samples with optically defined vertical split ring from 25 spatially resolved 300 × 300 μm regions in a 1-cm2 area. The technique is shown to provide a qualitative measure of the uniformity of the inclusions.

More Details

Compound Semiconductor Integrated Photonics for Avionics

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Alford, Charles A.; Cajas, Florante G.; Overberg, Mark E.; Peake, Gregory M.; Wendt, J.R.; Chow, Weng W.; Lentine, Anthony L.; Nelson, Jeffrey S.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Sanchez, Carlos A.; Pipkin, Jennifer R.; Girard, Gerald R.; Nielson, Greg N.; Cruz-Campa, Jose L.; Okandan, Murat O.

Abstract not provided.

Oblique patterned etching of vertical silicon sidewalls

Applied Physics Letters

Burckel, David B.; Finnegan, Patrick S.; Henry, Michael D.; Resnick, Paul J.; Jarecki, Robert L.

A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

More Details

Microsystem Enabled Photovoltaics

Nielson, Gregory N.; Cruz Campa, Jose L.; Okandan, Murat O.; Lentine, Anthony L.; Sweatt, W.C.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Jared, Bradley H.; Resnick, Paul J.; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Biefeld, Robert M.; Langlois, Eric L.; Yang, Benjamin B.; Koleske, Daniel K.; Wierer, Jonathan J.; Miller, William K.; Elisberg, Brenton E.; Zamora, David J.; Luna, Ian L.; Saavedra, Michael P.; Alford, Charles A.; Ballance, Mark H.; Wiwi, Michael W.; Samora, S.; Chavez, Julie C.; Pipkin, Jennifer R.; Nguyen, Janet N.; Anderson, Ben A.; Gu, Tian G.; Agrawal, Gautum A.; Nelson, Jeffrey S.

Abstract not provided.

Micro-fabricated ion traps for Quantum Information Processing; Highlights and lessons learned

Maunz, Peter L.; Blume-Kohout, Robin J.; Blain, Matthew G.; Benito, Francisco B.; Berry, Christopher W.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Dagel, Amber L.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Lobser, Daniel L.; Mizrahi, Jonathan M.; Nielsen, Erik N.; Resnick, Paul J.; Rembetski, John F.; Rudinger, Kenneth M.; Scrymgeour, David S.; Sterk, Jonathan D.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Stick, Daniel L.

Abstract not provided.

Micro-fabricated ion traps for Quantum Information Processing

Maunz, Peter L.; Hollowell, Andrew E.; Lobser, Daniel L.; Nordquist, Christopher N.; Benito, Francisco M.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Resnick, Paul J.; Rembetski, John F.; Sterk, Jonathan D.; Stick, Daniel L.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Dagel, Amber L.; Blain, Matthew G.; Scrymgeour, David S.

Abstract not provided.

Results 1–25 of 83
Results 1–25 of 83