Publications

Results 1–25 of 84
Skip to search filters

Penetration Bounds For Azimuthal Slot On Infinite Cylinder With Finite Length Backing Cylindrical Cavity

Warne, Larry K.; Campione, Salvatore; Martin, Luis S.; Pack, Alden R.; Langston, William L.; Zinser, Brian &.

We examine coupling into azimuthal slots on an infinite cylinder with a infinite length interior cavity operating both at the fundamental cavity modal frequencies, with small slots and a resonant slot, as well as higher frequencies. The coupling model considers both radiation on an infinite cylindrical exterior as well as a half space approximation. Bounding calculations based on maximum slot power reception and interior power balance are also discussed in detail and compared with the prior calculations. For higher frequencies limitations on matching are imposed by restricting the loads ability to shift the slot operation to the nearest slot resonance; this is done in combination with maximizing the power reception as a function of angle of incidence. Finally, slot power mismatch based on limited cavity load quality factor is considered below the first slot resonance.

More Details

Penetration through slots in cylindrical cavities with cavity modes overlapping with the first slot resonance

Electromagnetics

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Gutierrez, Roy K.; Hicks, Jeorge W.; Reines, Isak C.; Pfeiffer, Robert A.; Himbele, John J.; Williams, Jeffery T.

We analyze the coupling into a slotted cylindrical cavity operating at fundamental cavity modal frequencies overlapping with the slot’s first resonance frequency through an unmatched formulation that accounts for the slot’s absorption and radiation processes. The model is validated through full-wave simulations and experimental data. We then couple the unmatched formulation to a perturbation theory model to investigate an absorber within the cavity to reduce the interior field strength, also validated with full-wave simulations and experiments. These models are pivotal to understanding the physical processes involved in the electromagnetic penetration through slots, and may constitute design tools to mitigate electromagnetic interference effects within cavities.

More Details

Penetration through Slots in Cylindrical Cavities Operating at Fundamental Cavity Modes

IEEE Transactions on Electromagnetic Compatibility

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Pfeiffer, Robert A.; Martin, Nevin S.; Williams, Jeffery T.; Gutierrez, Roy K.; Reines, Isak C.; Huerta, Jose G.; Dang, Vinh Q.

In this article, we examine the coupling into an electrically short azimuthal slot on a cylindrical cavity operating at fundamental cavity modal frequencies. We first develop a matched bound formulation through which we can gather information for maximum achievable levels of interior cavity fields. Actual field levels are below this matched bound; therefore, we also develop an unmatched formulation for frequencies below the slot resonance to achieve a better insight on the physics of this coupling. Good agreement is observed between the unmatched formulation, full-wave simulations, and experimental data, providing a validation of our analytical models. We then extend the unmatched formulation to treat an array of slots, found again in good agreement with full-wave simulations. These analytical models can be used to investigate ways to mitigate electromagnetic interference and electromagnetic compatibility effects within cavities.

More Details

An Approximate Direct Inverse as a Preconditioner for Ill-conditioned Problems

2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings

Lee, Chung H.; Lee, Jin F.; Langston, William L.; Zinser, Brian; Dang, Vinh Q.; Huang, Andy H.; Campione, Salvatore

This paper implemented an approximate direct inverse for the surface integral equation including multilevel fast-multipole method. We apply it as a preconditioner to two examples suffering convergence problem with an iterative solver.

More Details

Multipole-based cable braid electromagnetic penetration model: Magnetic penetration case

Progress In Electromagnetics Research C

Campione, Salvatore; Warne, Larry K.; Langston, William L.

The goal of this paper is to present, for the first time, calculations of the magnetic penetration case of a first principles multipole-based cable braid electromagnetic penetration model. As a first test case, a one-dimensional array of perfect electrically conducting wires, for which an analytical solution is known, is investigated: We compare both the self-inductance and the transfer inductance results from our first principles cable braid electromagnetic penetration model to those obtained using the analytical solution. These results are found in good agreement up to a radius to half spacing ratio of about 0.78, demonstrating a robustness needed for many commercial and non-commercial cables. We then analyze a second set of test cases of a square array of wires whose solution is the same as the one-dimensional array result and of a rhomboidal array whose solution can be estimated from Kley’s model. As a final test case, we consider two layers of one-dimensional arrays of wires to investigate porpoising effects analytically. We find good agreement with analytical and Kley’s results for these geometries, verifying our proposed multipole model. Note that only our multipole model accounts for the full dependence on the actual cable geometry which enables us to model more complicated cable geometries.

More Details

Modeling shielded cables in Xyce based on transmission-line theory

2019 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2019 - Proceedings

Campione, Salvatore; Pung, Aaron J.; Warne, Larry K.; Langston, William L.; Mei, Ting M.

Electromagnetic shields are usually employed to protect cables and other devices; however, these are generally not perfect, and may permit external magnetic and electric fields to penetrate into the interior regions of the cable, inducing unwanted current and voltages. The aim of this paper is to verify a circuit model tool with our previously proposed analytical model [1] for evaluating currents and voltages induced in the inner conductor of braided-shield cables. This circuit model will enable coupling between electromagnetic and circuit simulations.

More Details

First principles model of electric and magnetic cable braid penetrations

2018 International Applied Computational Electromagnetics Society Symposium in Denver, ACES-Denver 2018

Campione, Salvatore; Warne, Larry K.; Langston, William L.

In this paper, we report our recent findings about a first principles, multipole-based model of electric and magnetic cable braid penetrations. We consider for brevity a one-dimensional array of wires, but the model can be readily applied to realistic cable geometries. Comparisons between the first principles method and analytical formulas will be provided for both electric and magnetic penetration cases. These comparisons confirm that our first principles model works within the geometric characteristics of many commercial cables.

More Details

Massively parallel frequency domain electromagnetic simulation codes

2018 International Applied Computational Electromagnetics Society Symposium in Denver, ACES-Denver 2018

Langston, William L.; Kotulski, J.D.; Coats, Rebecca S.; Jorgenson, Roy E.; Blake, S.A.; Campione, Salvatore; Pung, Aaron J.; Zinser, Brian

This paper provides an overview of the electromagnetic frequency domain simulation capabilities of the Electromagnetic Theory department at Sandia National Laboratories via a description of two of its codes. EIGER is a Method of Moments code for electromagnetic simulations, but it only runs on traditional CPUs, not on new architectures. Gemma is in development to replace EIGER and will run on many architectures, including CPUs, GPUs, and MICs, by leveraging the Kokkos library.

More Details
Results 1–25 of 84
Results 1–25 of 84