Classical molecular dynamics simulation was used to study the adsorption of Na+, Ca2+, Ba2+, and Cl- ions on gibbsite edge (1 0 0), basal (0 0 1), and nanoparticle (NP) surfaces. The gibbsite NP consists of both basal and edge surfaces. Simulation results indicate that Na+ and Cl- ions adsorb on both (1 0 0) and (0 0 1) surfaces as inner-sphere species (i.e., no water molecules between an ion and the surface). Outer-sphere Cl- ions (i.e., one water molecule between an ion and the surface) were also found on these surfaces. On the (1 0 0) edge, Ca2+ ions adsorb as inner-sphere and outer-sphere complexes, whereas on the (0 0 1) surface, outer-sphere Ca2+ ions are the dominant species. Ba2+ ions were found as inner-sphere and outer-sphere complexes on both surfaces. Calculated ion surface coverages indicate that, for all ions, surface coverages are always higher on the basal surface compared to those on the edge surface. More importantly, surface coverages for cations on the gibbsite NP are always higher than those calculated for the (1 0 0) and (0 0 1) surfaces. This enhanced ion adsorption behavior for the NP is due to the significant number of inner-sphere cations found at NP corners. Outer-sphere cations do not contribute to the enhanced surface coverage. In addition, there is no ion adsorption enhancement observed for the Cl- ion. Our work provides a molecular-scale understanding of the relative significance of ion adsorption onto gibbsite basal versus edge surfaces and demonstrates the corner effect on ion adsorption on NPs.
Classical molecular dynamics simulation was used to study the adsorption of Na+, Ca2+, Ba2+, and Cl- ions on gibbsite edge (1 0 0), basal (0 0 1), and nanoparticle (NP) surfaces. The gibbsite NP consists of both basal and edge surfaces. Simulation results indicate that Na+ and Cl- ions adsorb on both (1 0 0) and (0 0 1) surfaces as inner-sphere species (i.e., no water molecules between an ion and the surface). Outer-sphere Cl- ions (i.e., one water molecule between an ion and the surface) were also found on these surfaces. On the (1 0 0) edge, Ca2+ ions adsorb as inner-sphere and outer-sphere complexes, whereas on the (0 0 1) surface, outer-sphere Ca2+ ions are the dominant species. Ba2+ ions were found as inner-sphere and outer-sphere complexes on both surfaces. Calculated ion surface coverages indicate that, for all ions, surface coverages are always higher on the basal surface compared to those on the edge surface. More importantly, surface coverages for cations on the gibbsite NP are always higher than those calculated for the (1 0 0) and (0 0 1) surfaces. This enhanced ion adsorption behavior for the NP is due to the significant number of inner-sphere cations found at NP corners. Outer-sphere cations do not contribute to the enhanced surface coverage. In addition, there is no ion adsorption enhancement observed for the Cl- ion. Our work provides a molecular-scale understanding of the relative significance of ion adsorption onto gibbsite basal versus edge surfaces and demonstrates the corner effect on ion adsorption on NPs.
The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)–(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. As a result, it further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.
Proceedings of SPIE - The International Society for Optical Engineering
Casias, Lilian K.; Morath, Christian P.; Steenbergen, Elizabeth H.; Webster, Preston; Kim, Jin K.; Cowan, Vincent M.; Balakrishnan, Ganesh; Krishna, Sanjay
Accurate p-type doping of the active region in III-V infrared detectors is essential for optimizing the detector design and overall performance. While most III-V detector absorbers are n-type (e.g., nBn), the minority carrier devices with p-type absorbers would be expected to have relatively higher quantum efficiencies due to the higher mobility of their constituent minority carrier electrons. However, correctly determining the hole carrier concentration in narrow bandgap InAsSb may be challenging due to the potential for electron accumulation at the surface of the material and at its interface with the layer grown directly below it. Electron accumulation layers form high conductance electron channels that can dominate both resistivity and Hall-effect transport measurements. Therefore, to correctly determine the bulk hole concentration and mobility, temperature- and magnetic-field-dependent transport measurements in conjunction with Multi-Carrier Fit analysis were utilized on a series of p-doped InAs0.91Sb0.09 samples on GaSb substrates. Finally, the resulting hole concentrations and mobilities at 77 K (300 K) were 1.6 x 1018 cm-3 (2.3 x 1018 cm-3) and 125 cm2 V-1 s-1 (60 cm2 V-1 s-1), respectively, compared with the intended Be-doping of ~2 x 1018 cm-3.
Granular salt is likely to be used as backfill material and a seal system component within geologic salt formations serving as a repository for long-term isolation of nuclear waste. Pressure from closure of the surrounding salt formation will promote consolidation of granular salt, eventually resulting in properties comparable to native salt. Understanding dependence of consolidation processes on stress state, moisture availability, temperature, and time is important for demonstrating sealing functions and long-term repository performance. This study characterizes laboratory-consolidated granular salt by means of microstructural observations. Granular salt material from mining operations was obtained from the bedded Salado Formation hosting the Waste Isolation Pilot Plant and the Avery Island salt dome. Laboratory test conditions included hydrostatic consolidation of jacketed granular salt with varying conditions of confining isochoric stress to 38 MPa, temperature to 250 °C, moisture additions of 1% by weight, time duration, and vented and non-vented states. Resultant porosities ranged between 1% and 22%. Optical and scanning electron microscopic techniques were used to ascertain consolidation mechanisms. From these investigations, samples with 1% added moisture or unvented during consolidation, exhibit clear pressure solution processes with tightly cohered grain boundaries and occluded fluid pores. Samples with only natural moisture content consolidated by a combination of brittle, cataclastic, and crystal plastic deformation. Recrystallization at 250 °C irrespective of moisture conditions was also observed. The range and variability of conditions applied in this study, combined with the techniques used to display microstructural features, are unique, and provide insight into an important area of governing deformation mechanism(s) occurring within salt repository applications.
We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B=0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B. Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.
A direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70μm Parylene-N were driven to 1 MA in 100ns, with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally correlated stratified thermal perturbations perpendicular to the current whose wave numbers, k, grew exponentially with rate γ(k)=0.06ns-1-(0.4ns-1μm2rad-2)k2 in ∼1g/cm3, ∼7000K aluminum.
All-dielectric metasurfaces, two-dimensional arrays of subwavelength low loss dielectric inclusions, can be used not only to control the amplitude and phase of optical beams, but also to generate new wavelengths through enhanced nonlinear optical processes that are free from some of the constraints dictated by the use of bulk materials. Recently, high quality factor (Q) resonances in these metasurfaces have been revealed and utilized for applications such as sensing and lasing. The origin of these resonances stems from the interference of two nanoresonator modes with vastly different Q. Here we show that nonlinear optical processes can be further enhanced by utilizing these high-Q resonances in broken symmetry all-dielectric metasurfaces. We study second harmonic generation from broken symmetry metasurfaces made from III-V semiconductors and observe nontrivial spectral shaping of second-harmonic and multifold efficiency enhancement induced by high field localization and enhancement inside the nanoresonators.
Brener, Igal; Lo Chner, Fjf; Fedotova, Anna N.; Liu, Sheng; Keeler, Gordon A.; Peake, Gregory M.; Saravi, Sina; Shcherbakov, Maxim R.; Burger, Sven; Fedyanin, Andrey A.; Pertsch, Thomas; Setzpfandt, Frank; Staude, Isabelle
Resonant semiconductor metasurfaces are an emerging versatile platform for nonlinear photonics. In this work, we investigate second-harmonic generation from metasurfaces consisting of two-dimensional square arrays of gallium arsenide nanocylinders as a function of the polarization of the fundamental wave. To this end, we perform nonlinear second harmonic microscopy, where the pump wavelength is tuned to the resonances of the metasurfaces. Furthermore, imaging the generated nonlinear signal in Fourier space allows us to analyze the spatial properties of the generated second harmonic. Our experiments reveal that the second harmonic is predominantly emitted into the first diffraction orders of the periodic arrangements, and that its intensity varies with the polarization angle of the fundamental wave. While this can be expected from the structure of the GaAs nonlinear tensor, the characteristics of this variation itself are found to depend on the pump wavelength. Interestingly, we show that the metasurface can reverse the polarization dependence of the second harmonic with respect to an unstructured GaAs wafer. These general observations are confirmed by numerical simulations using a simplified model for the metasurface. Our results provide valuable input for the development of metasurface-based classical and quantum light sources based on parametric processes.
Forsterite (Mg2SiO4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate-impact steady shocks and laser-driven decaying shock compression experiments. Additionally, we performed density functional theory-based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg2SiO4 and an assemblage of solid MgO plus liquid magnesium silicate. The measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electrical conductor at low pressures and that the conductivity increases with pressure.
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank–Nicolson scheme and backward Euler scheme are utilized.
Methane (CH4) and carbon dioxide (CO2), the two major components generated from kerogen maturation, are stored dominantly in nanometer-sized pores in shale matrix as (1) a compressed gas, (2) an adsorbed surface species and/or (3) a species dissolved in pore water (H2O). In addition, supercritical CO2 has been proposed as a fracturing fluid for simultaneous enhanced oil/gas recovery (EOR) and carbon sequestration. A mechanistic understanding of CH4-CO2-H2O interactions in shale nanopores is critical for designing effective operational processes. Using molecular simulations, we show that kerogen preferentially retains CO2 over CH4 and that the majority of CO2 either generated during kerogen maturation or injected in EOR will remain trapped in the kerogen matrix. The trapped CO2 may be released only if the reservoir pressure drops below the supercritical CO2 pressure. When water is present in the kerogen matrix, it may block CH4 release. However, the addition of CO2 may enhance CH4 release because CO2 can diffuse through water and exchange for adsorbed methane in the kerogen nanopores.
We present that distinguishing whether a signal corresponds to a single source or a limited number of highly overlapping point spread functions (PSFs) is a ubiquitous problem across all imaging scales, whether detecting receptor-ligand interactions in cells or detecting binary stars. Super-resolution imaging based upon compressed sensing exploits the relative sparseness of the point sources to successfully resolve sources which may be separated by much less than the Rayleigh criterion. However, as a solution to an underdetermined system of linear equations, compressive sensing requires the imposition of constraints which may not always be valid. One typical constraint is that the PSF is known. However, the PSF of the actual optical system may reflect aberrations not present in the theoretical ideal optical system. Even when the optics are well characterized, the actual PSF may reflect factors such as non-uniform emission of the point source (e.g. fluorophore dipole emission). As such, the actual PSF may differ from the PSF used as a constraint. Similarly, multiple different regularization constraints have been suggested including the l1-norm, l0-norm, and generalized Gaussian Markov random fields (GGMRFs), each of which imposes a different constraint. Other important factors include the signal-to-noise ratio of the point sources and whether the point sources vary in intensity. In this work, we explore how these factors influence super-resolution image recovery robustness, determining the sensitivity and specificity. In conclusion, we determine an approach that is more robust to the types of PSF errors present in actual optical systems.
Predefined functions are necessary components of scientific visualization. This milestone will ensure that these core functions will be implemented in VTK-m and made available to ParaView, and Visit.
Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. In this paper, we describe 12.5% ScAl single target reactive sputter deposition process and establishes a direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. Finally, this work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.
Many astrophysical systems encompass very large dynamical ranges in space and time, which are not accessible by direct numerical simulations. Thus, idealized subvolumes are often used to study small-scale effects including the dynamics of turbulence. These turbulent boxes require an artificial driving in order to mimic energy injection from large-scale processes. In this paper, we show and quantify how the autocorrelation time of the driving and its normalization systematically change the properties of an isothermal compressible magnetohydrodynamic flow in the sub- and supersonic regime and affect astrophysical observations such as Faraday rotation. For example, we find that δ-in-time forcing with a constant energy injection leads to a steeper slope in kinetic energy spectrum and less-efficient small-scale dynamo action. In general, we show that shorter autocorrelation times require more power in the acceleration field, which results in more power in compressive modes that weaken the anticorrelation between density and magnetic field strength. Thus, derived observables, such as the line-of-sight (LOS) magnetic field from rotation measures, are systematically biased by the driving mechanism. Finally, we argue that δ-in-time forcing is unrealistic and numerically unresolved, and conclude that special care needs to be taken in interpreting observational results based on the use of idealized simulations.
A heterogeneous run on the full Trinity supercomputer at LANL was performed using SPARTA during March 9-12, 2018. Over 19,000 nodes (9200+ Haswell and 9900+ KNL) and 1.2 million MPI processes were used. The run was successful, with SPARTA running for several hours with good performance (better than the same simulation running on full Sequoia). However, several challenges were encountered, and some unresolved issues remain.
Neuromorphic devices are becoming increasingly appealing as efficient emulators of neural networks used to model real world problems. However, no hardware to date has demonstrated the necessary high accuracy and energy efficiency gain over CMOS in both (1) training via backpropagation and (2) in read via vector matrix multiplication. Such shortcomings are due to device non-idealities, particularly asymmetric conductance tuning in response to uniform voltage pulse inputs. Here, by formulating a general circuit model for capacitive ion-exchange neuromorphic devices, we show that asymmetric nonlinearity in organic electrochemical neuromorphic devices (ENODes) can be suppressed by an appropriately chosen write scheme. Simulations based upon our model suggest that a nonlinear write-selector could reduce the switching voltage and energy, enabling analog tuning via a continuous set of resistance states (100 states) with extremely low switching energy (∼170 fJ • μm-2). This work clarifies the pathway to neural algorithm accelerators capable of parallelism during both read and write operations.
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.
This three-year effort started in FY17 with the primary objective of detailing the environmental compliance costs and lessons learned from U.S. based MHK projects that have gone through the permitting and compliance process. The project goal is to find ways to improve the efficiency and effectiveness of the permitting and compliance process that reduce deployment uncertainties and associated risks/costs; ultimately encouraging investment in MHK projects. The project team is composed of Sandia National Laboratories, H. T. Harvey & Associates, Integral Consulting, and Kearns & West. Step one of the project process, collect data to determine permitting and compliance costs, was a focus during 2017, but is an ongoing process to ensure the project team is working with the most recent and accurate data as possible. Currently, the project team is focusing on step two of the project process, identify cost reduction pathways. Step three, develop cost reduction strategies, will follow during Fall 2018 and Winter 2019. Each step is envisioned as an iterative approach working with industry and regulators to best meet the project goal.
A recent analysis of historical radionuclide resuspension datasets confirmed the general applicability of the Anspaugh and modified Anspaugh models of resuspension factors following both controlled and disastrous releases. While observations appear to have larger variance earlier in time, previous studies equally weighted the data for statistical fit calculations; this could induce a positive skewing of resuspension coefficients in the early time-period. A refitting is performed using a relative instrumental weighting of the observations. Measurements within a 3-d window are grouped into singular sample sets to construct standard deviations. The resulting best-fit equations produce tamer exponentials, which give decreased integrated resuspension factor values relative to those reported by Anspaugh. As expected, the fits attenuate greater error among the data at earlier time. The reevaluation provides a sharper contrast between the empirical models and reaffirms their deficiencies in the short-lived timeframe wherein the dynamics of particulate dispersion dominate the resuspension process.
One-dimensional hybrid fs/ps CARS imaging provides single-laser-shot measurements of temperature, oxygen, and hydrogen in a plasma-assisted hydrogen diffusion flame. The coaxial dielectric-barrier-discharge burner collapses the Re ∼50 hydrogen diffusion flame to within ∼5 mm of the burner surface at an applied AC potential of 8.75 kV at 18 kHz, coinciding nicely with the full spatial extent of the 1D CARS measurements. Translating the burner through the measurement volume allowed for measurements at numerous radial locations in increments of 1 mm with a resolution of 140 µm × 30 µm × 600 µm, sufficient to resolve spatial gradients in this unsteady flame. Longer probe delays, required for improved dynamic range in regions of high temperature fluctuations, proved difficult to model as a result of a nontrivial decay in the O2 Raman coherence arising from complexities associated with the triplet ground electronic state of the O2 molecule. Oxygen linewidths were treated empirically using the observed O2 coherence decay in spectra acquired from the product gases of lean, near-adiabatic H2/air flames stabilized on a Hencken flat-flame burner. While still leading to errors up to 10% at worst, the empirically determined Raman linewidth factors eliminated any systematic error in the O2/N2 measurements with probe delay. Temperature measurements in the Hencken Burner flames proved to be insensitive to probe pulse delay, providing robust thermometry. Demonstration of this technique in both the canonical Hencken burner flames and a new DBD burner validates its effectiveness in producing multiple spatially resolved measurements in combustion environments. Measurements in the DBD burner revealed an unsteady, counterflow flattened flame structure near the fuel orifice which became unsteady as the reaction zone curves towards the surface for larger radial positions. Fluctuations in the fuel concentration were largest at the source, as the large, plasma-generated, unsteady external toroidal vortex that dominates the transport in this flame provides enhanced ventilation of the flame surface in close proximity to the fuel tube.
We report here our recent electron transport results in spatially separated two-dimensional electron and hole gases with nominally degenerate energy subbands, realized in an InAs(10 nm)/GaSb(5 nm) coupled quantum well. We observe a narrow and intense maximum (∼500 kΩ) in the four-terminal resistivity in the charge neutrality region, separating the electron-like and hole-like regimes, with a strong activated temperature dependence above T = 7 K and perfect stability against quantizing magnetic fields. We discuss several mechanisms for that unexpectedly large resistance in this zero-gap semi-metal system including the formation of an excitonic insulator state.
Three-dimensional (3D) frameworks have been successfully constructed by interlayering La0.7Sr0.3MnO3 (LSMO)-CeO2 based epitaxial vertically aligned nanocomposite (VAN) thin films with pure CeO2 (or LSMO) layers. Such 3D interconnected CeO2 scaffolds integrate the lateral film strain by the interlayers with the vertical strain in VAN layers, and thus achieve the maximized strain tuning in LSMO. More importantly, by varying the types of the interlayers (i.e., CeO2 or LSMO) and the number of interlayers from 1 to 3 layers, such 3D framework nanostructures effectively tune the electrical transport properties of LSMO, e.g., from a 3D insulating CeO2 framework with integrated magnetic tunnel junction structures, to a 3D conducting LSMO framework, where the magnetoresistance (MR) peak values have been tuned systematically to a record high of 66% at 56 K and enhanced MR properties at high temperatures above room temperature (∼325 K). This new 3D framed design provides a novel approach in maximizing film strain, enhancing strain-driven functionalities, and manipulating the electrical transport properties effectively.
Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (< 2 μm). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced qualitative agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.
Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate d I / d t = 5 k A / n s. After the cold fuel is magnetized, a rapidly rising current (200 k A / n s) generates a calculated electric field of 64 M V / m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. A range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.
The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process and to illustrate the type of insights that may be gained with this process. Newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.
Processing of the low workability Fe-Co-1.5V (Hiperco® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification, which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. Magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco® alloys. Hiperco® is a registered trademark of Carpenter Technologies, Readings, PA.
A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.
This work proposes a finite element (FE) analysis workflow to simulate directed energy deposition (DED) additive manufacturing at a macroscopic length scale (i.e. part length scale) and to predict thermal conditions during manufacturing, as well as distortions, strength and residual stresses at the completion of manufacturing. The proposed analysis method incorporates a multi-step FE workflow to elucidate the thermal and mechanical responses in laser engineered net shaping (LENS) manufacturing. For each time step, a thermal element activation scheme captures the material deposition process. Then, activated elements and their associated geometry are analyzed first thermally for heat flow due to radiation, convection, and conduction, and then mechanically for the resulting stresses, displacements, and material property evolution. Simulations agree with experimentally measured in situ thermal measurements for simple cylindrical build geometries, as well as general trends of local hardness distribution and plastic strain accumulation (represented by relative distribution of geometrically necessary dislocations).
Substitution of Al by Sc has been predicted and demonstrated to improve the piezoelectric response in AlN for commercial market applications in radio frequency filter technologies. Although cosputtering with multiple targets have achieved Sc incorporation in excess of 40%, industrial processes requiring stable single target sputtering are currently limited. A major concern with sputter deposition of ScAl is the control over the presence of non-c-axis oriented crystal growth, referred to as inclusions here, while simultaneously controlling film stress for suspended microelectromechanical systems (MEMS) structures. This work describes 12.5% ScAl single target reactive sputter deposition process and establishes a direct relationship between the inclusion occurrences and compressive film stress allowing for the suppression of the c-axis instability on silicon (100) and Ti/TiN/AlCu seeding layers. An initial high film stress, for suppressing inclusions, is then balanced with a lower film stress deposition to control total film stress to prevent Euler buckling of suspended MEMS devices. Contour mode resonators fabricated using these films demonstrate effective coupling coefficients up to 2.7% with figures of merit of 42. This work provides a method to establish inclusion free films in ScAlN piezoelectric films for good quality factor devices.
The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range of temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.
This paper investigates the suitability of sizing the electrical export cable based on the rating of the contributing WECs within a farm. These investigations have produced a new methodology to evaluate the probabilities associated with peak power values on an annual basis. It has been shown that the peaks in pneumatic power production will follow an exponential probability function for a linear model. A methodology to combine all the individual probability functions into an annual view has been demonstrated on pneumatic power production by a Backward Bent Duct Buoy (BBDB). These investigations have also resulted in a highly simplified and perfunctory model of installed cable cost as a function of voltage and conductor cross-section. This work solidifies the need to determine electrical export cable rating based on expected energy delivery as opposed to device rating as small decreases in energy delivery can result in cost savings.
I work as a Year-Round Business Intern at Sandia National Laboratories. Sandia was founded during WWII under the name of Z Division as the manufacturers and assembly hands of nuclear weapons for Los Alamos National Laboratories. In the year 1948, the name Z Division was changed to Sandia National Laboratories. Sandia is a government-owned, contractoroperated facility. This means that while Sandia's work is largely government-funded Sandia is operated by a 3rd party contractor. Over the years, Sandia has been managed by different organizations, but as of May l', 2017, the current management company became the National Technology and Engineering Solutions of Sandia (NTESS) LLC.
Sylgard® 184/Glass Microballoon (GMB) potting material is currently used in many NW systems. Analysts need a macroscale constitutive model that can predict material behavior under complex loading and damage evolution. To address this need, ongoing modeling and experimental efforts have focused on study of damage evolution in these materials. Micromechanical finite element simulations that resolve individual GMB and matrix components promote discovery and better understanding of the material behavior. With these simulations, we can study the role of the GMB volume fraction, time-dependent damage, behavior under confined vs. unconfined compression, and the effects of partial damage. These simulations are challenging and push the boundaries of capability even with the high performance computing tools available at Sandia. We summarize the major challenges and the current state of this modeling effort, as an exemplar of micromechanical modeling needs that can motivate advances in future computing efforts.