Ship tracks are quasi-linear cloud patterns produced from the interaction of ship emissions with low boundary layer clouds. They are visible throughout the diurnal cycle in satellite images from space-borne assets like the Advanced Baseline Imagers (ABI) aboard the National Oceanic and Atmospheric Administration Geostationary Operational Environmental Satellites (GOES-R). However, complex atmospheric dynamics often make it difficult to identify and characterize the formation and evolution of tracks. Ship tracks have the potential to increase a cloud's albedo and reduce the impact of global warming. Thus, it is important to study these patterns to better understand the complex atmospheric interactions between aerosols and clouds to improve our climate models, and examine the efficacy of climate interventions, such as marine cloud brightening. Over the course of this 3-year project, we have developed novel data-driven techniques that advance our ability to assess the effects of ship emissions on marine environments and the risks of future marine cloud brightening efforts. The three main innovative technical contributions we will document here are a method to track aerosol injections using optical flow, a stochastic simulation model for track formations and an automated detection algorithm for efficient identification of ship tracks in large datasets.
This report summarizes the goals and findings of eight research projects conducted under the Computing and Information Sciences (CIS) Research Foundation and related to the COVID- 19 pandemic. The projects were all formulated in response to Sandia's call for proposals for rapid-response research with the potential to have a positive impact on the global health emergency. Six of the projects in the CIS portfolio focused on modeling various facets of disease spread, resource requirements, testing programs, and economic impact. The two remaining projects examined the use of web-crawlers and text analytics to allow rapid identification of articles relevant to specific technical questions, and categorization of the reliability of content. The portfolio has collectively produced methods and findings that are being applied by a range of state, regional, and national entities to support enhanced understanding and prediction of the pandemic's spread and its impacts.
In practical applications of automated terrain classification from high-resolution polarimetric synthetic aperture radar (PolSAR) imagery, different terrain types may inherently contain a high level of internal variability, as when a broadly defined class (e.g., 'trees') contains elements arising from multiple subclasses (pine, oak, and willow). In addition, real-world factors such as the time of year of a collection, the moisture content of the scene, the imaging geometry, and the radar system parameters can all increase the variability observed within each class. Such variability challenges the ability of classifiers to maintain a high level of sensitivity in recognizing diverse elements that are within-class, without sacrificing their selectivity in rejecting out-of-class elements. In an effort to gauge the degree to which classifiers respond robustly in the presence of intraclass variability and generalize to untrained scenes and conditions, we compare the performance of a suite of classifiers across six broad terrain categories from a large set of polarimetric synthetic aperture radar (PolSAR) image sets. The main contributions of this article are as follows: 1) an analysis of the robustness of a variety of current state-of-the art classification algorithms to intraclass variability found in PolSAR image sets, and 2) the associated PolSAR image and feature data that Sandia is releasing to the research community with this publication. The analysis of the classification algorithms we provide will serve as a benchmark of performance for the future PolSAR terrain classification algorithm research and development enabled by the image sets and data provided. By sharing our analysis and high-resolution fully polarimetric Sandia data with the research community, we enable others to develop and assess a new generation of robust terrain classification algorithms for PolSAR.
A new method is introduced for combining information from multiple sources to support one-class classification. The contributing sources may represent measurements taken by different sensors of the same physical entity, repeated measurements by a single sensor, or numerous features computed from a single measured image or signal. The approach utilizes the theory of statistical hypothesis testing, and applies Fisher's technique for combining p-values, modified to handle nonindependent sources. Classifier outputs take the form of fused p-values, which may be used to gauge the consistency of unknown entities with one or more class hypotheses. The approach enables rigorous assessment of classification uncertainties, and allows for traceability of classifier decisions back to the constituent sources, both of which are important for high-consequence decision support. Application of the technique is illustrated in two challenge problems, one for skin segmentation and the other for terrain labeling. The method is seen to be particularly effective for relatively small training samples.
In previous research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimator is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.