The Redmond Salt Mine (RSM) Monitoring Experiment in Utah was designed to record seis-moacoustic data at distances less than 50 km for algorithm testing and development. During the experiment from October 2017 to July 2019, six broadband seismic stations were operating at a time, with three of them having fixed locations for the duration, whereas the three other stations were moved to different locations every one-and-half to two-and-half months. RSM operations consist of nighttime underground blasting several times per week. The RSM is located in proximity to a belt of active seismicity, allowing direct comparison of natural and anthropogenic sources. Using the recorded data set, we built 1373 events with local magnitude (ML) of −2.4 and lower to 3.3. For 75 blasts (RMEs) from the Redmond Salt Mine and 206 tectonic earthquakes (EQs), both ML and the coda duration magnitude (MC) are well constrained. We used these events to test and design discriminants that separate the RMEs from the EQs and are effective at local distances. The discriminants consist of ML −MC, low-frequency Sg to high-frequency Sg, Pg/Sg phase-amplitude ratios, and Rg/Sg spectral amplitude ratios, as well as different combinations of two or more of these classifiers. The areas under the receiver operating characteristic curves (AUCs) of 0.92–1.0 for ML −MC, low-frequency Sg to high-frequency Sg, and Rg/Sg indicate that these discriminants are very effective. Conversely, the AUC of only 0.57 for Pg/Sg suggests that this discriminant is only slightly better than a random classifier. Among the effective classifiers, Rg/Sg, shows the lowest likelihood of misclassification (4.3%) for the populations. Results of joint discriminant analyses suggest that even the arguably inef-fective single classifier, like Pg/Sg in this case, can provide some value when used in combi-nation with others.
PCalc is a software tool that computes travel-time predictions, ray path geometry and model queries. This software has a rich set of features, including the ability to use custom 3D velocity models to compute predictions using a variety of geometries. The PCalc software is especially useful for research related to seismic monitoring applications.
LocOO3D is a software tool that computes geographical locations for seismic events at regional to global scales. This software has a rich set of features, including the ability to use custom 3D velocity models, correlated observations and master event locations. The LocOO3D software is especially useful for research related to seismic monitoring applications, since it allows users to easily explore a variety of location methods and scenarios and is compatible with the CSS3.0 data format used in monitoring applications. The LocOO3D software, User's Manual, and Examples are available on the web at: https://github.com/sandialabs/LocOO3D For additional information on GeoTess, SALSA3D, RSTT, and other related software, please see: https://github.com/sandialabs/GeoTessJava, www.sandia.gov/geotess, www.sandia.gov/salsa3d, and www.sandia.gov/rstt
Goals for this project are to: numerically simulate wave propagation in layered crustal models with laterally-varying structure; Investigate seismic phases Pg and Pn; help understand the variability and complexity of these phases in recorded seismic data; and Use wavefield movies and "wavepaths" to suggest improvements for SALSA3D crustal tomography. In this presentation I will outline progress that has been made to date in an effort to modify a community research modeling code ("simulator")into a tool which can be used by GNDD researchers to study the effect of varying crustal velocity on wavefield propagation.
Loc003D is a software tool that computes geographical locations for seismic events at regional to global scales. This software has a rich set of features, including the ability to use custom 3D velocity models, correlated observations and master event locations. The Loc003D software is especially useful for research related to seismic monitoring applications, since it allows users to easily explore a variety of location methods and scenarios and is compatible with the CSS3.0 software format used in monitoring applications. The Loc003D software is available on the web at: www.sandia.gov/salsa3d/Software.html The software is packaged with this user's manual and a set of example datasets, the use of which is described in this manual.
pCalc is a software tool that computes travel-time predictions, ray path geometry and model queries. This software has a rich set of features, including the ability to use custom 3D velocity models to compute predictions using a variety of geometries. The pCalc software is especially useful for research related to seismic monitoring applications. The pCalc software is available on the web at: www.sandia.gov/salsa3d/Software.html The software is packaged with this user's manual and a set of example datasets, the use of which is described in this manual.