Publications

24 Results
Skip to search filters

LocOO3D User's Manual

Davenport, Kathy D.; Conley, Andrea C.; Downey, Nathan J.; Ballard, Sanford B.; Hipp, James R.; Begnaud, Mike B.

LocOO3D is a software tool that computes geographical locations for seismic events at regional to global scales. This software has a rich set of features, including the ability to use custom 3D velocity models, correlated observations and master event locations. The LocOO3D software is especially useful for research related to seismic monitoring applications, since it allows users to easily explore a variety of location methods and scenarios and is compatible with the CSS3.0 data format used in monitoring applications. The LocOO3D software, User's Manual, and Examples are available on the web at: https://github.com/sandialabs/LocOO3D For additional information on GeoTess, SALSA3D, RSTT, and other related software, please see: https://github.com/sandialabs/GeoTessJava, www.sandia.gov/geotess, www.sandia.gov/salsa3d, and www.sandia.gov/rstt

More Details

PCalc User's Manual

Conley, Andrea C.; Downey, Nathan J.; Ballard, Sanford B.; Hipp, James R.; Hammond, Patrick H.; Davenport, Kathy D.; Begnaud, Michael L.

PCalc is a software tool that computes travel-time predictions, ray path geometry and model queries. This software has a rich set of features, including the ability to use custom 3D velocity models to compute predictions using a variety of geometries. The PCalc software is especially useful for research related to seismic monitoring applications.

More Details

Visco-TTI-elastic FWI using discontinuous galerkin

SEG Technical Program Expanded Abstracts

Ober, Curtis C.; Smith, Thomas M.; Overfelt, James R.; Collis, Samuel S.; von Winckel, Gregory J.; van Bloemen Waanders, Bart G.; Downey, Nathan J.; Mitchell, Scott A.; Bond, Stephen D.; Aldridge, David F.; Krebs, Jerome R.

The need to better represent the material properties within the earth's interior has driven the development of higherfidelity physics, e.g., visco-tilted-transversely-isotropic (visco- TTI) elastic media and material interfaces, such as the ocean bottom and salt boundaries. This is especially true for full waveform inversion (FWI), where one would like to reproduce the real-world effects and invert on unprocessed raw data. Here we present a numerical formulation using a Discontinuous Galerkin (DG) finite-element (FE) method, which incorporates the desired high-fidelity physics and material interfaces. To offset the additional costs of this material representation, we include a variety of techniques (e.g., non-conformal meshing, and local polynomial refinement), which reduce the overall costs with little effect on the solution accuracy.

More Details
24 Results
24 Results