This report updates the Regional Disruption Economic Impact Model (RDEIM) GDP-based model described in Bixler et al. (2020) used in the MACCS accident consequence analysis code. MACCS is the U.S. Nuclear Regulatory Commission (NRC) used to perform probabilistic health and economic consequence assessments for atmospheric releases of radionuclides. It is also used by international organizations, both reactor owners and regulators. It is intended and most commonly used for hypothetical accidents that could potentially occur in the future rather than to evaluate past accidents or to provide emergency response during an ongoing accident. It is designed to support probabilistic risk and consequence analyses and is used by the NRC, U.S. nuclear licensees, the Department of Energy, and international vendors, licensees, and regulators. The update of the RDEIM model in version 4.2 expresses the national recovery calculation explicitly, rather than implicitly as in the previous version. The calculation of the total national GDP losses remains unchanged. However, anticipated gains from recovery are now allocated across all the GDP loss types – direct, indirect, and induced – whereas in version 4.1, all recovery gains were accounted for in the indirect loss type. To achieve this, we’ve introduced new methodology to streamline and simplify the calculation of all types of losses and recovery. In addition, RDEIM includes other kinds of losses, including tangible wealth. This includes loss of tangible assets (e.g., depreciation) and accident expenditures (e.g., decontamination). This document describes the updated RDEIM economic model and provides examples of loss and recovery calculation, results analysis, and presentation. Changes to the tangible cost calculation and accident expenditures are described in section 2.2. The updates to the RDEIM input-output (I-O) model are not expected to affect the final benchmark results Bixler et al. (2020), as the RDEIM calculation for the total national GDP losses remains unchanged. The reader is referred to the MACCS revision history for other cost modelling changes since version 4.0 that may affect the benchmark. RDEIM has its roots in a code developed by Sandia National Laboratories for the Department of Homeland Security to estimate short-term losses from natural and manmade accidents, called the Regional Economic Accounting analysis tool (REAcct). This model was adapted and modified for MACCS. It is based on I-O theory, which is widely used in economic modeling. It accounts for direct losses to a disrupted region affected by an accident, indirect losses to the national economy due to disruption of the supply chain, and induced losses from reduced spending by displaced workers. RDEIM differs from REAcct in in its treatment and estimation of indirect loss multipliers, elimination of double-counting associated with inter-industry trade in the affected area, and that it is intended to be used for extended periods that can occur from a major nuclear reactor accident, such as the one that occurred at the Fukushima Daiichi site in Japan. Most input-output models do not account for economic adaptation and recovery, and in this regard RDEIM differs from its parent, REAcct, because it allows for a user-definable national recovery period. Implementation of a recovery period was one of several recommendations made by an independent peer review panel to ensure that RDEIM is state-of-practice. For this and several other reasons, RDEIM differs from REAcct.
The MELCOR Accident Consequence Code System (MACCS) is used by Nuclear Regulatory Commission (NRC) and various national and international organizations for probabilistic consequence analysis of nuclear power accidents. This User Guide is intended to assist analysts in understanding the MACCS/WinMACCS model and to provide information regarding the code. This user guide version describes MACCS Version 3.10.0. Features that have been added to MACCS in subsequent versions are described in separate documentation. This User Guide provides a brief description of the model history, explains how to set up and execute a problem, and informs the user of the definition of various input parameters and any constraints placed on those parameters. This report is part of a series of reports documenting MACCS. Other reports include the MACCS Theory Manual, MACCS Verification Report, Technical Bases for Consequence Analyses Using MACCS, as well as documentation for preprocessor codes including SecPop, MelMACCS, and COMIDA2. PAPERWORK REDUCTION ACT STATEMENT The NUREG does not contain information collection requirements and, therefore, is not subject to the requirements of the Paperwork Reduction Act of 1995 (44 USC 3501, et seq.). PUBLIC PROTECTION NOTIFICATION The NRC may not conduct or sponsor, and a person is not required to respond to, a request for information or an information collection requirement unless the requesting document displays a currently valid OMB control number. ACKNOWLEDGEMENTS Contributions to this User Guide were received from NRC and Sandia National Laboratories (SNL) project managers, technical experts, and code authors dedicated to the production of a valuable resource for the MACCS user community. Instructions and guidance included herein were developed over many years and include advancements in the code that provide users the ability to develop complex consequence modeling scenarios. WinMACCS and many of the early MACCS developments were due to vision of an earlier Project Manager, Jocelyn Mitchell. Jonathan Barr and AJ Nosek also contributed to the development of this report. The current NRC Project Manager, Salman Haq, provided the leadership to ensure this document was completed. Several other NRC and Sandia staff provided insights supporting development of the MACCS code and of this document.
MACCS (MELCOR Accident Consequence Code System), WinMACCS, and MelMACCS now facilitate a multi-unit consequence analysis. MACCS evaluates the consequences of an atmospheric release of radioactive gases and aerosols into the atmosphere and is most commonly used to perform probabilistic safety assessments (PSAs) and related consequence analyses for nuclear power plants (NPPs). WinMACCS is a user-friendly preprocessor for MACCS. MelMACCS extracts source-term information from a MELCOR plot file. The current development can combine an arbitrary number of source terms, representing simultaneous releases from a multi-unit facility, into a single consequence analysis. The development supports different release signatures, fission product inventories, and accident initiation times for each unit. The treatment is completely general except that the model is currently limited to collocated units. A major practical consideration for performing a multi-unit PSA is that a comprehensive treatment for more than two units may involve an intractable number of combinations of source terms. This paper proposes and evaluates an approach for reducing the number of calculations to be tractable, even for sites with eight or ten units. The approximation error introduced by the approach is acceptable and is considerably less than other errors and uncertainties inherent in a Level 3 PSA.
This document summarily provides brief descriptions of the MELCOR code enhancement made between code revision number 14959and 18019. Revision 14959 represents the previous official code release; therefore, the modeling features described within this document are provided to assist users that update to the newest official MELCOR code release, 18019. Along with the newly updated MELCOR Users Guide and Reference Manual, users are aware and able to assess the new capabilities for their modeling and analysis applications.
This SAND Report provides an overview of AniMACCS, the animation software developed for the MELCOR Accident Consequence Code System (MACCS). It details what users need to know in order to successfully generate animations from MACCS results, to include information on the capabilities, requirements, testing, limitations, input settings, and problem reporting instructions for AniMACCS version 1.3. Supporting information is provided in the appendices, such as guidance on required input files using both WinMACCS and running MACCS from the command line. This page left blank
AniMACCS is a utility code in the MELCOR Accident Consequence Code System (MACCS) software suite that allows for certain MACCS output information to be visually displayed and overlaid onto a geospatial map background. AniMACCS was developed by Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. MACCS is designed to calculate health and economic consequences following a release of radioactive material in the atmosphere. MACCS accomplishes this by modeling the atmospheric dispersion, deposition, and consequences of the release, which depend on several factors including the source term, weather, population, economic, and land-use characteristics of the impacted geographical area. From these inputs, MACCS determines the characteristics of the plume, as well as ground and air concentrations as a function of time and radionuclide.
MACCS (MELCOR Accident Consequence Code System), WinMACCS, and MelMACCS now facilitate a multi-unit consequence analysis. MACCS evaluates the consequences of an atmospheric release of radioactive gases and aerosols into the atmosphere and is most commonly used to perform probabilistic safety assessments (PSAs) and related consequence analyses for nuclear power plants (NPPs). WinMACCS is a user-friendly preprocessor for MACCS. MelMACCS extracts source-term information from a MELCOR plot file. The current development can combine an arbitrary number of source terms, representing simultaneous releases from a multi-unit facility, into a single consequence analysis. The development supports different release signatures, fission product inventories, and accident initiation times for each unit. The treatment is completely general except that the model is currently limited to collocated units. A major practical consideration for performing a multi-unit PSA is that a comprehensive treatment for more than two units may involve an intractable number of combinations of source terms. This paper proposes and evaluates an approach for reducing the number of calculations to be tractable, even for sites with eight or ten units. The approximation error introduced by the approach is acceptable and is considerably less than other errors and uncertainties inherent in a Level 3 PSA.
The MACCS (MELCOR Accident Consequence Code System) code is the U.S. Nuclear Regulatory Commission (NRC) tool used to perform probabilistic health and economic consequence assessments for atmospheric releases of radionuclides. It is also used by international organizations, both reactor owners and regulators. It is intended and most commonly used for hypothetical accidents that could potentially occur in the future rather than to evaluate past accidents or to provide emergency response during an ongoing accident. It is designed to support probabilistic risk and consequence analyses and is used by the NRC, U.S. nuclear licensees, the Department of Energy, and international vendors, licensees, and regulators. This report describes the modeling framework, implementation, verification, and benchmarking of a GDP-based model for economic losses that has recently been developed as an alternative to the original cost-based economic loss model in MACCS. The GDP-based model has its roots in a code developed by Sandia National Laboratories for the Department of Homeland Security to estimate short-term losses from natural and manmade accidents, called the Regional Economic Accounting analysis tool (REAcct). This model was adapted and modified for MACCS and is now called the Regional Disruption Economic Impact Model (RDEIM). It is based on input-output theory, which is widely used in economic modeling. It accounts for direct losses to a disrupted region affected by an accident, indirect losses to the national economy due to disruption of the supply chain, and induced losses from reduced spending by displaced workers. RDEIM differs from REAcct in its treatment and estimation of indirect loss multipliers, elimination of double counting associated with inter-industry trade in the affected area, and that it is designed to be used to estimate impacts for extended periods that can occur from a major nuclear reactor accident, such as the one that occurred at the Fukushima Daiichi site in Japan. Most input-output models do not account for economic adaptation and recovery, and in this regard RDEIM differs from its parent, REAcct, because it allows for a user-definable national recovery period. Implementation of a recovery period was one of several recommendations made by an independent peer review panel to ensure that RDEIM is state-of-practice. For this and several other reasons, RDEIM differs from REAcct. Both the original and the RDEIM economic loss models account for costs from evacuation and relocation, decontamination, depreciation, and condemnation. Where the original model accounts for an expected rate of return, based on the value of property, that is lost during interdiction, the RDEIM model instead accounts for losses of GDP based on the industrial sectors located within a county. The original model includes costs for disposal of crops and milk that the RDEIM model currently does not, but these costs tend to contribute insignificantly to the overall losses. This document discusses three verification exercises to demonstrate that the RDEIM model is implemented correctly in MACCS. It also describes a benchmark study at five nuclear power plants chosen to represent the spectrum of U.S. commercial sites. The benchmarks provide perspective on the expected differences between the RDEIM and the original cost-based economic loss models. The RDEIM model is shown to consistently predict larger losses than the original model, probably in part because it accounts for national losses by including indirect and induced losses; whereas, the original model only accounts for regional losses. Nonetheless, the RDEIM model predicts losses that are remarkably consistent with the original cost-based model, differing by 16% at most for the five sites combined with three source terms considered in this benchmark.
Three codes are used for comparisons in this report to evaluate the adequacy of MACCS in the nearfield, AERMOD, ARCON96 and QUIC. Test cases were developed to give a broad range of weather conditions, building dimensions and plume buoyancy. Based on the comparisons of MACCS with AERMOD, ARCON96 and QUIC across the test cases, the following observations are made: MACCS calculations configured with point-source, ground-level, nonbuoyant plumes provide nearfield results that bound the centerline, ground-level air concentrations from AERMOD, ARCON96, and QUIC. MACCS calculations with ground-level, nonbuoyant plumes that include the effects of the building wake (area source) provide nearfield results that bound the results from AERMOD and QUIC and the results from ARCON96 at distances >250 m. If using a point-source is too conservative and it is desired to bound the results from all three codes, another alternative is to use area source parameters in MACCS that are less than the standard values, i.e., an area source intermediate between the standard recommendation and a point source. All these options provide results from MACCS that are bounding for the test cases evaluated. Based on these observations, it appears that MACCS is adequate for use in nearfield calculations, given the correct parameterization.
The purpose of this document is to discuss the construction of two MELCOR Accident Consequence Code System (MACCS) dose conversion factor (DCF) files in some detail, an older file created in 2007 named FGR13DCF.inp and a newer file created in 2018 called FGR13GyEquiv_RevAinp. Very briefly, the difference between the two files is that the older file follows the standard conventions of assigning a radiation weighting factor of 20 for alpha radiation for all tissues and organs; whereas, the newer file complies with the Federal Guidance Report (FGR) 13 health effects modeling and uses modified radiation weighting factors (referred to as relative biological effectiveness (RBE) factors) for alpha radiation of 10 for breast and of 1 for red bone marrow. During an intermediate period, a file called FGR13GyEquiv.inp was created and used for the State-of-the-Art Reactor Consequence Analysis (SOARCA) calculations. This file was not released to the MACCS user community, but it is also discussed briefly in this document.