Publications

Results 1–25 of 49
Skip to search filters

3D orthorhombic earth model effects on seismic source characterization

Jensen, Richard P.; Preston, Leiph A.

Most earth materials are anisotropic with regard to seismic wave-speeds, especially materials such as shales, or where oriented fractures are present. However, the base assumption for many numerical simulations is to treat earth materials as isotropic media. This is done for simplicity, the apparent weakness of anisotropy in the far field, and the lack of well-characterized anisotropic material properties for input into numerical simulations. One approach for addressing the higher complexity of actual geologic regions is to model the material as an orthorhombic medium. We have developed an explicit time-domain, finite-difference (FD) algorithm for simulating three-dimensional (3D) elastic wave propagation in a heterogeneous orthorhombic medium. The objective of this research is to investigate the errors and biases that result from modeling a non-isotropic medium as an isotropic medium. This is done by computing “observed data” by using synthetic, anisotropic simulations with the assumption of an orthorhombic, anisotropic earth model. Green’s functions for an assumed isotropic earth model are computed and then used an inversion designed to estimate moment tensors with the “observed” data. One specific area of interest is how shear waves, which are introduced in an anisotropic model even for an isotropic explosion, affect the characterization of seismic sources when isotropic earth assumptions are made. This work is done in support of the modeling component of the Source Physics Experiment (SPE), a series of underground chemical explosions at the Nevada National Security Site (NNSS).

More Details

Verification of a rapid mooring and foundation design tool

Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment

Weller, Sam D.; Hardwick, Jon; Gomez, Steven P.; Heath, Jason; Jensen, Richard P.; Mclean, Niall; Johanning, Lars

Marine renewable energy devices require mooring and foundation systems that suitable in terms of device operation and are also robust and cost effective. In the initial stages of mooring and foundation development a large number of possible configuration permutations exist. Filtering of unsuitable designs is possible using information specific to the deployment site (i.e. bathymetry, environmental conditions) and device (i.e. mooring and/or foundation system role and cable connection requirements). The identification of a final solution requires detailed analysis, which includes load cases based on extreme environmental statistics following certification guidance processes. Static and/or quasi-static modelling of the mooring and/or foundation system serves as an intermediate design filtering stage enabling dynamic time-domain analysis to be focused on a small number of potential configurations. Mooring and foundation design is therefore reliant on logical decision making throughout this stage-gate process. The open-source DTOcean (Optimal Design Tools for Ocean Energy Arrays) Tool includes a mooring and foundation module, which automates the configuration selection process for fixed and floating wave and tidal energy devices. As far as the authors are aware, this is one of the first tools to be developed for the purpose of identifying potential solutions during the initial stages of marine renewable energy design. While the mooring and foundation module does not replace a full design assessment, it provides in addition to suitable configuration solutions, assessments in terms of reliability, economics and environmental impact. This article provides insight into the solution identification approach used by the module and features the verification of both the mooring system calculations and the foundation design using commercial software. Several case studies are investigated: a floating wave energy converter and several anchoring systems. It is demonstrated that the mooring and foundation module is able to provide device and/or site developers with rapid mooring and foundation design solutions to appropriate design criteria.

More Details

Deep Borehole Field Test Laboratory and Borehole Testing Strategy

Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, R.J.; Heath, Jason; Herrick, Courtney G.; Jensen, Richard P.; Gardner, W.P.; Sevougian, Stephen D.; Bryan, Charles R.; Jang, Jay J.; Stein, Emily S.; Bauer, Stephen J.; Daley, Tom D.; Freifeld, Barry M.; Birkholzer, Jens T.; Spane, Frank A.

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

More Details

An investigation of DTOcean foundation and anchor systems

Gomez, Steven P.; Jensen, Richard P.; Heath, Jason

This memo documents the mechanical loading analysis performed on the second set of DTOcean program WP4 foundation and anchor systems submodule design iterations [4]. Finite Element Analysis (FEA) simulations were performed to validate design requirements defined by Python based analytic simulations of the WP4 program Naval Facilities Engineering Command (NAVFAC) tool. This FEA procedure focuses on worst case loading scenarios on shallow gravity foundation and pile anchor designs produced by WP4. These models include a steel casing and steel anchor with soft clay surrounding the steel components respectively.

More Details
Results 1–25 of 49
Results 1–25 of 49