Publications

Results 30001–30200 of 96,771

Search results

Jump to search filters

PIMS: Memristor-Based Processing-in-Memory-and-Storage

Cook, Jeanine C.

Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energy efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.

More Details

Use of Wind Turbine Kinetic Energy to Supply Transmission Level Services

Guttromson, Ross G.; Gravagne, Ian; White, Jonathan; Berg, Jonathan C.; Wilches-Bernal, Felipe; Paquette, Joshua P.; Hansen, Clifford H.

This paper discusses the broad use of rotational kinetic energy stored in wind turbine rotors to supply services to the electrical power grid. The grid services are discussed in terms of zero-net-energy, which do not require a reduction in power output via pitch control (spill), but neither do they preclude doing so. The services discussed include zero-net-energy regulation, transient and small signal stability, and other frequency management services. The delivery of this energy requires a trade-off between the frequency and amplitude of power modulation and is limited, in some cases, by equipment ratings and the unresearched long-term mechanical effects on the turbine. As wind displaces synchronous generation, the grid's inertial storage is being reduced, but the amount of accessible kinetic energy in a wind turbine at rated speed is approximately 6 times greater than that of a generator with only a 0.12% loss in efficiency and 75 times greater at 10% loss. The potential flexibility of the wind's kinetic storage is also high. However, the true cost of providing grid services using wind turbines, which includes a potential increase in operations and maintenance costs, have not been compared to the value of the services themselves.

More Details

Path Finding for Maximum Value of Information in Multi-Modal Underwater Wireless Sensor Networks

IEEE Transactions on Mobile Computing

Gjanci, Petrika; Petrioli, Chiara; Basagni, Stefano; Phillips, Cynthia A.; Turgut, Damla

We consider underwater multi-modal wireless sensor networks (UWSNs) suitable for applications on submarine surveillance and monitoring, where nodes offload data to a mobile autonomous underwater vehicle (AUV) via optical technology, and coordinate using acoustic communication. Sensed data are associated with a value, decaying in time. In this scenario, we address the problem of finding the path of the AUV so that the Value of Information (VoI) of the data delivered to a sink on the surface is maximized. We define a Greedy and Adaptive AUV Path-finding (GAAP) heuristic that drives the AUV to collect data from nodes depending on the VoI of their data. For benchmarking the performance of AUV path-finding heuristics, we define an integer linear programming (ILP) formulation that accurately models the considered scenario, deriving a path that drives the AUV to collect and deliver data with the maximum VoI. In our experiments GAAP consistently delivers more than 80 percent of the theoretical maximum VoI determined by the ILP model. We also compare the performance of GAAP with that of other strategies for driving the AUV among sensing nodes, namely, random paths, TSP-based paths and a 'lawn mower'-like strategy. Our results show that GAAP always outperforms every other heuristic in terms of delivered VoI, also obtaining higher energy efficiency.

More Details

Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

Physics of Plasmas

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Speas, Christopher S.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

More Details

A Future with Quantum Machine Learning

Computer

DeBenedictis, Erik

Could combining quantum computing and machine learning with Moore's law produce a true 'rebooted computer'? This article posits that a three-technology hybrid-computing approach might yield sufficiently improved answers to a broad class of problems such that energy efficiency will no longer be the dominant concern.

More Details

Use and Testing of a Wind Turbine for the Supply of Balancing Reserves and Wide-Area Grid Stability

Guttromson, Ross G.; Gravagne, Ian; Berg, Jonathan C.; White, Jonathan; Wilches-Bernal, Felipe; Summers, Adam; Schoenwald, David A.

This report documents the use of wind turbine inertial energy for the supply of two specific electric power grid services; system balancing and real power modulation to improve grid stability. Each service is developed to require zero net energy consumption. Grid stability was accomplished by modulating the real power output of the wind turbine at a frequency and phase associated with wide-area modes. System balancing was conducted using a grid frequency signal that was high-pass filtered to ensure zero net energy. Both services used Phasor Measurement Units (PMUs) as their primary source of system data in a feedforward control (for system balancing) and feedback control (for system stability).

More Details

Measuring the soot onset temperature in high-pressure n-dodecane spray pyrolysis

Combustion and Flame

Skeen, Scott A.; Yasutomi, Koji

Soot formation in pyrolyzing sprays of n-dodecane is visualized and quantified in a high-pressure, high-temperature, constant-volume spray chamber at 38 bar, 76 bar, and 114 bar. Sprays of n-dodecane are injected at 500 bar from a single-hole, 186-µm orifice diameter fuel injector. We quantify the temporal evolution of the soot optical thickness and the total soot mass formed in the pyrolyzing sprays using a high-speed extinction imaging diagnostic. The vessel ambient temperature and pressure are varied independently to identify the soot onset temperature for n-dodecane pyrolysis. Linear extrapolation of the maximum soot formation rates as a function of ambient temperature reveals a soot onset temperature near 1450 K. The onset temperature determined here for n-dodecane is within 50 K of those previously measured along the centerline of atmospheric pressure coflow diffusion flames for smaller alkane fuels.

More Details

Geometric Hitting Set for Segments of Few Orientations

Theory of Computing Systems

Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S.B.; Parekh, Ojas D.; Phillips, Cynthia A.

We study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the “hitting points”). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. We give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.

More Details

Interface reactions responsible for run-out in active brazing: Part 1

Welding Journal

Vianco, Paul T.; Walker, Charles A.; De Smet, Dennis J.; Kilgo, Alice C.; McKenzie, Bonnie B.; Grant, Richard P.

The run-out phenomenon was observed in Ag-Cu-Zr active braze joints made between the alumina ceramic and Kovar™ base material. Run-out introduces a significant yield loss by generating functional and/or cosmetic defects in brazements. A prior study identified a correlation between run-out and the aluminum (Al) released by the reduction/oxidation reaction with alumina and aluminum's reaction with the Kovar™ base material. A study was undertaken to understand the fundamental principles of run-out by examining the interface reaction between Ag-xAl filler metals (x = 2,5, and 10 wt-%) and Kovar™ base material. Sessile drop samples were fabricated using brazing temperatures of 965° (T769°F) or 995°C 0823°F) and times of 5 or 20 min. The correlation was made between the degree of wetting and spreading by the sessile drops and the run-out phenomenon. Wetting and spreading increased with Al content (x) of the. Ag-xAl filler metal, but was largely insensitive to the brazing process parameters. The increased Al concentration resulted in higher Al contents of the (Fe, Ni, Co)xAly reaction layer. Run-out was predicted when the filler metal has a locally elevated Al content exceeding 2-5 wt-%. Several mitigation strategies were proposed, based upon these findings.

More Details

The structure and propagation of laminar flames under autoignitive conditions

Combustion and Flame

Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.

The laminar flame speed sl is an important reference quantity for characterising and modelling combustion. Experimental measurements of laminar flame speed require the residence time of the fuel/air mixture (τf) to be shorter than the autoignition delay time (τ). This presents a considerable challenge for conditions where autoignition occurs rapidly, such as in compression ignition engines. As a result, experimental measurements in typical compression ignition engine conditions do not exist. Simulations of freely propagating premixed flames, where the burning velocity is found as an eigenvalue of the solution, are also not well posed in such conditions, since the mixture ahead of the flame can autoignite, leading to the so called “cold boundary problem”. Here, a numerical method for estimating a reference flame speed, sR, is proposed that is valid for laminar flame propagation at autoignitive conditions. Two isomer fuels are considered to test this method: ethanol, which in the considered conditions is a single-stage ignition fuel; and dimethyl ether, which has a temperature-dependent single- or two-stage ignition and a negative temperature coefficient regime for τ. Calculations are performed for the flame position in a one-dimensional computational domain with inflow-outflow boundary conditions, as a function of the inlet velocity UI and for stoichiometric fuel–air premixtures. The response of the flame position, LF, to UI shows distinct stabilisation regimes. For single-stage ignition fuels, at low UI the flame speed exceeds UI and the flame becomes attached to the inlet. Above a critical UI value, the flame detaches from the inlet and Lf becomes extremely sensitive to UI until, for sufficiently high UI, the sensitivity decreases and Lf corresponds to the location expected from a purely autoignition stabilised flame. The transition from the attached to the autoignition regimes has a corresponding peak dLf/dUI value which is proposed to be a unique reference flame speed sR for single-stage ignition fuels. For two-stage ignition fuels, there is an additional stable regime where a high-temperature flame propagates into a pool of combustion intermediates generated by the first stage of autoignition. This results in two peaks in dLf/dUI and therefore two reference flame speed values. The lower value corresponds to the definition of sR for single-stage ignition fuels, while the higher value exists only for two-stage ignition fuels and corresponds to a high temperature flame propagating into the first stage of autoignition and is denoted sR′. A transport budget analysis for low- and high-temperature radical species is also performed, which confirms that the flame structures at UI=sR and UI=sR′ do indeed correspond to premixed flames (deflagrations), as opposed to spontaneous ignition fronts which do not have a unique propagation speed.

More Details

Hardware Evaluation: Abstract Machine Models and Proxy Architectures for Exascale Computing

Bair, Ray; Chien, Andrew; Cook, Jeanine; Donofrio, Dave; Grider, Gary; Kuehn, Jeff; Moore, Shirley; Shalf, John; Vetter, Jeff

The strategic and economic impacts of high performance computing (HPC) systems, over the last several decades, have enabled dramatic improvements in manufacturing, design, development, and research, across almost every sector of the U.S. economy, including genetic analysis for agriculture and medicine, oil exploration, electronics, aircraft, and automotive design, and of course national defense technologies. HPC has repeatedly compounded reductions in time-to-solution and time-to-market in each of these areas. In recognition of these strategic and economic impacts, the Department of Energy (DOE) created the Exascale Computing Project (ECP) as a broad-based technology project focusing on simultaneously co-evolving high-performance computing architecture, system software, and application software. While many details of the exascale architectures are undefined, communicating the form and direction of this co-evolution of advances, in each of these three components, across the project, presents a need for a common language through which these advances can be shared. In this document we present a series of abstract representations designed to allow application developers to focus on the aspects of the machine that are important or relevant to performance and code structure. These abstract machine models (AMMs) describe the proposed architectures at the component and system level and are intended as communication aids between application developers and hardware architects during the co-design process. In addition to providing a common language for communication, the constraints of protecting the intellectual property of ECP’s vendor partners requires that the architectural advances be presented in an abstract sense, rather than exposing the specifics of an individual vendor’s designs, while still providing enough detail such that application developers will be able to reason about the performance trade-offs in the design space of their applications.

More Details

Submittal of Solid Waste Management Units and Areas of Concern Annual Long-Term Monitoring and Maintenance Report for Calendar Year 2017

Dotson, Patrick W.; Little, Bonnie C.

This SWMU and AOC Annual Long-Term Monitoring and Maintenance (LTMM) Report for Calendar Year 2017 (Annual LTMM Report) details the measures performed for 21 Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) at Sandia National Laboratories/New Mexico (SNL/NM) in accordance with the requirements of the “Long-Term Monitoring and Maintenance [LTMM] Plan for SWMUs and AOCs Granted Corrective Action Complete with Controls” in Attachment M of the Resource Conservation and Recovery Act Facility Operating Permit (Permit), which took effect February 26, 2015. This Annual LTMM Report does not present the measures for SWMU 76, Mixed Waste Landfill (MWL), as the applicable MWL reporting adheres to the approved MWL LTMM Plan, Section 4.8.1 and requires a separate annual report which will be submitted to the New Mexico Environment Department by June 30, 2018. Measures at these SWMUs and AOCs include surveillance of site conditions and maintenance of institutional controls. Conditions requiring maintenance or repair activities were identified at three of the inspected SWMUs and AOCs (SWMUs 45, 46, and 87) during the Permit-required annual site inspections. One SWMU identification sign located at SWMU 46 and two identification signs located at SWMU 87 were replaced due to weathered lettering. Evidence of erosion was observed at SWMU 45 during the annual site inspection; erosion controls will be implemented as needed to prevent the inadvertent exposure of hazardous wastes or hazardous waste constituents. SWMU 45 is located on the sloped border of Tijeras Arroyo south of Technical Area-IV. The erosion controls planned for the Tijeras Arroyo Escarpment will address not only SWMU 45, but also SWMUs 46 and 229 as a best management practice. SNL/NM personnel plan to complete this work in calendar year 2018. The status and progress of this project will be reported in the 2018 Annual SWMUs and AOCs Annual LTMM Report for Calendar Year 2018 to be submitted to the New Mexico Environment Department on March 31, 2019, as required by the Permit. Based upon the inspections performed and site conditions observed, the administrative and physical institutional controls in place at the SWMUs and AOCs are effectively providing continued protection of human health and the environment.

More Details

Understanding Multicomponent Multiphase Hydrocarbon Fluid Interaction and Transport in Shale Matrix: From Nanoscale to Wellbore Production

Wang, Yifeng

One critical issue related to shale oil/gas production is a rapid decline in wellbore production and a low recovery rate. Therefore, maximizing wellbore production and extending the production life cycle are crucial for the sustainability of shale oil/gas production. Shale oil/gas production starts with creating a fracture network by injecting a pressurized fluid in a wellbore. The induced fractures are then held open by proppant particles. During production, oil and gas release from the shale matrix, migrate to nearby fractures, and ultimately reach a production wellbore. Given the relatively high permeability of the induced fractures, oil/gas release and transport in low-permeability shale matrix are likely a limiting step for long-term wellbore production. This project is aimed to (1) fundamentally understand the disposition and release of complex hydrocarbon mixtures in nanopore networks of shale matrix and their transport from low-permeability matrix to hydrofracking-induced fractures under various reservoir conditions ranging from black oil to dry gas and (2) use machine learning to upscale and integrate the nanometer-scale understanding into reservoir-scale model simulations. The work will help develop new stimulation strategies to enable efficient resource recovery from fewer and less environmentally impactful wells.

More Details

Magnetic Nanocomposites and Their Incorporation into Higher Order Biosynthetic Functional Architectures

ACS Omega

Watt, John D.; Collins, Aaron M.; Vreeland, Erika C.; Montano, Gabriel A.; Huber, Dale L.

A magnetically active Fe3O4/poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PBD) nanocomposite is formed by the encapsulation of magnetite nanoparticles with a short-chain amphiphilic block copolymer. This material is then incorporated into the self-assembly of higher order polymer architectures, along with an organic pigment, to yield biosynthetic, bifunctional optical and magnetically active Fe3O4/bacteriochlorophyll c/PEO-b-PBD polymeric chlorosomes.

More Details

Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write

Applied Physics Letters

Kaehr, Bryan J.; Dye, John A.; Tomko, John A.; Olson, David H.; Braun, Jeffrey L.; Kelliher, Andrew P.; Hopkins, Patrick E.

In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. In this study, we find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substrate preparation. In conclusion, these findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.

More Details

Multiscale modeling of shock wave localization in porous energetic material

Physical Review B

Wood, Mitchell A.; Kittell, D.E.; Yarrington, Cole Y.; Thompson, Aidan P.

Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

More Details

The value proposition for energy storage at the sterling municipal light department

IEEE Power and Energy Society General Meeting

Byrne, Raymond H.; Hamilton, Sean; Borneo, Daniel R.; Olinsky-Paul, Todd

The Sterling Municipal Light Department (SMLD) is a progressive public power utility located 10 miles NNE of Worcester, Massachusetts in the Town of Sterling. SMLD has a long history of investment in renewable generation, with approximately 35% of generation coming from renewable sources. The goal of this report is to identify potential benefits and value streams from electrical energy storage. Benefits considered in this analysis include: energy arbitrage, frequency regulation, reduction in monthly network load, reduction in capacity payments to ISO New England, and grid resiliency.

More Details

Simulation results for the pacific DC intertie wide area damping controller

IEEE Power and Energy Society General Meeting

Pierre, Brian J.; Wilches-Bernal, Felipe; Elliott, Ryan T.; Schoenwald, David A.; Neely, Jason C.; Byrne, Raymond H.; Trudnowski, Daniel J.

This paper presents simulation results of a control scheme for damping inter-area oscillations using high-voltage DC (HVDC) power modulation. The control system utilizes realtime synchrophasor feedback to construct a supplemental commanded power signal for the Pacific DC Intertie (PDCI) in the North American Western Interconnection (WI). A prototype of this controller has been implemented in hardware and, after multiple years of development, successfully tested in both open and closed-loop operation. This paper presents simulation results of the WI during multiple severe contingencies with the damping controller in both open and closed-loop. The primary results are that the controller adds significant damping to the controllable modes of the WI and that it does not adversely affect the system response in any of the simulated cases. Furthermore, the simulations show that a feedback signal composed of the frequency difference between points of measurement near the Washington-Oregon border and the California-Oregon border can be employed with similar results to a feedback signal constructed from measurements taken near the Washington-Oregon border and southern California. This is an important consideration because it allowed the control system to be designed without relying upon cross-system measurements, which would have introduced significant additional delay.

More Details

Effect of time delay asymmetries in power system damping control

IEEE Power and Energy Society General Meeting

Wilches-Bernal, Felipe; Concepcion, Ricky J.; Neely, Jason C.; Schoenwald, David A.; Byrne, Raymond H.; Pierre, Brian J.; Elliott, Ryan T.

Distributed control compensation based on local and remote sensor feedback can improve small-signal stability in large distributed systems, such as electric power systems. Long distance remote measurements, however, are potentially subject to relatively long and uncertain network latencies. In this work, the issue of asymmetrical network latencies is considered for an active damping application in a two-area electric power system. The combined effects of latency and gain are evaluated in time domain simulation and in analysis using root-locus and the maximum singular value of the input sensitivity function. The results aid in quantifying the effects of network latencies and gain on system stability and disturbance rejection.

More Details

Effect of time delay asymmetries in power system damping control

IEEE Power and Energy Society General Meeting

Wilches-Bernal, Felipe; Concepcion, Ricky J.; Neely, Jason C.; Schoenwald, David A.; Byrne, Raymond H.; Pierre, Brian J.; Elliott, Ryan T.

Distributed control compensation based on local and remote sensor feedback can improve small-signal stability in large distributed systems, such as electric power systems. Long distance remote measurements, however, are potentially subject to relatively long and uncertain network latencies. In this work, the issue of asymmetrical network latencies is considered for an active damping application in a two-area electric power system. The combined effects of latency and gain are evaluated in time domain simulation and in analysis using root-locus and the maximum singular value of the input sensitivity function. The results aid in quantifying the effects of network latencies and gain on system stability and disturbance rejection.

More Details

Maximizing revenue from electrical energy storage in MISO energy & frequency regulation markets

IEEE Power and Energy Society General Meeting

Nguyen, Tu A.; Byrne, Raymond H.; Concepcion, Ricky J.; Gyuk, Imre

FERC Order 755 requires RTO/ISOs to compensate the frequency regulation resources based on the actual regulation service provided. Based on this rule, a resource is compensated by a performance-based payment including a capacity payment which accounts for its provided regulation capacity and a performance payment which reflects the quantity and accuracy of its regulation service. The RTO/ISOs have been implementing different market rules to comply with FERC Order 755. This paper focuses on the MISO's implementation and presents the calculations to maximize the potential revenue of electrical energy storage (EES) from participation in arbitrage and frequency regulation in the day-ahead market using linear programming. A case study was conducted for the Indianapolis Power & Light's 20MW/20MWh EES at Harding Street Generation Station based on MISO historical data from 2014 and 2015. The results showed the maximum revenue was primarily produced by frequency regulation.

More Details

Motivation and requirements for quasi-static time series (QSTS) for distribution system analysis

IEEE Power and Energy Society General Meeting

Reno, Matthew J.; Deboever, Jeremiah; Mather, Barry

Distribution system analysis with ever increasing numbers of distributed energy resources (DER) requires quasistatic time-series (QSTS) analysis to capture the time-varying and time-dependent aspects of the system. Previous literature has demonstrated the benefits of QSTS, but there is limited information available for the requirements and standards for performing QSTS simulations. This paper provides a novel analysis of the QSTS requirements for the input data timeresolution, the simulation time-step resolution, and the length of the simulation. Detailed simulations quantify the specific errors introduced by not performing yearlong high-resolution QSTS simulations.

More Details

Initial closed-loop testing results for the pacific DC intertie wide area damping controller

IEEE Power and Energy Society General Meeting

Trudnowski, Daniel; Pierre, Brian J.; Wilches-Bernal, Felipe; Schoenwald, David A.; Elliott, Ryan T.; Neely, Jason C.; Byrne, Raymond H.; Kosterev, Dmitry

Lightly damped electromechanical oscillations are a source of concern in the western interconnect. Recent development of a reliable real-time wide-area measurement system (WaMS) has enabled the potential for large-scale damping control approaches for stabilizing critical oscillation modes. a recent research project has focused on the development of a prototype feedback modulation controller for the Pacific DC Intertie (PDCI) aimed at stabilizing such modes. The damping controller utilizes real-time WaMS signals to form a modulation command for the DC power on the PDCI. This paper summarizes results from the first actual-system closed-loop tests. Results demonstrate desirable performance and improved modal damping consistent with previous model studies.

More Details

Nuclear Magnetic Resonance Study of Anion and Cation Reorientational Dynamics in (NH4)2B12H12

Journal of Physical Chemistry. C

Stavila, Vitalie S.

Here, diammonium dodecahydro-closo-dodecaborate (NH4)2B12H12 is the ionic compound combining NH4+ cations and [B12H12]2– anions, both of which can exhibit high reorientational mobility. To study the dynamical properties of this material, we measured the proton NMR spectra and spin–lattice relaxation rates in (NH4)2B12H12 over the temperature range of 6–475 K. Two reorientational processes occurring at different frequency scales have been revealed. In the temperature range of 200–475 K, the proton spin–lattice relaxation data are governed by thermally activated reorientations of the icosahedral [B12H12]2– anions. This motional process is characterized by the activation energy of 486(8) meV, and the corresponding reorientational jump rate reaches ~108 s–1 near 410 K. Below 100 K, the relaxation data are governed by the extremely fast process of NH4+ reorientations which are not “frozen out” at the NMR frequency scale down to 6 K. The experimental results in this range are described in terms of a gradual transition from the regime of low-temperature quantum dynamics (rotational tunneling of NH4 groups) to the regime of classical jump reorientations of NH4 groups with an activation energy of 26.5 meV. Our study offers physical insights into the rich dynamical behavior of (NH4)2B12H12 on an atomic level, providing a link between the microscopic and thermodynamic properties of this compound.

More Details

Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland

Geophysical Research Letters

Hoffman, Matthew J.; Perego, Mauro P.; Andrews, Lauren C.; Price, Stephen F.; Neumann, Thomas A.; Johnson, Jesse V.; Catania, Ginny; Luthi, Martin P.

Moulins permit access of surface meltwater to the glacier bed, causing basal lubrication and ice speedup in the ablation zone of western Greenland during summer. Despite the substantial impact of moulins on ice dynamics, the conditions under which they form are poorly understood. We assimilate a time series of ice surface velocity from a network of eleven Global Positioning System receivers into an ice sheet model to estimate ice sheet stresses during winter, spring, and summer in a ∼30 × 10 km region. Surface-parallel von Mises stress increases slightly during spring speedup and early summer, sufficient to allow formation of 16% of moulins mapped in the study area. In contrast, 63% of moulins experience stresses over the tensile strength of ice during a short (hours) supraglacial lake drainage event. Lake drainages appear to control moulin density, which is itself a control on subglacial drainage efficiency and summer ice velocities.

More Details

Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

IEEE Transactions on Smart Grid

Rosewater, David M.; Ferreira, Summer R.; Schoenwald, David A.; Hawkins, Jon; Santoso, Surya

Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational data is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.

More Details

Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods

Journal of the American Chemical Society

Grambow, Colin A.; Jamal, Adeel; Li, Yi P.; Green, William H.; Zador, Judit Z.; Suleimanov, Yury V.

Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The present joint approach significantly outperforms previous manual and automated transition-state searches - 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Overall, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).

More Details

Incorporating Human Readiness Levels at Sandia National Laboratories

Journal of Human Performance in Extreme Environments

See, Judi E.; Morris, Jason; Craft, Richard L.; Moulton, Michael; Trujillo, Steven M.

Since 2010, the concept of human readiness levels has been under development as a possible supplement to the existing technology readiness level (TRL) scale. The intent is to provide a mechanism to address safety and performance risks associated with the human component in a system that parallels the TRL structure already familiar to the systems engineering community. Sandia National Laboratories in Albuquerque, New Mexico, initiated a study in 2015 to evaluate options to incorporate human readiness planning for Sandia processes and products. The study team has collected the majority of baseline assessment data and has conducted interviews to understand staff perceptions of four different options for human readiness planning. Preliminary results suggest that all four options may have a vital role, depending on the type of work performed and the phase of product development. Upon completion of data collection, the utility of identified solutions will be assessed in one or more test cases.

More Details

Physiological and Cognitive Factors Related to Human Performance During the Grand Canyon Rim-to-Rim Hike

Journal of Human Performance in Extreme Environments

Avina, Glory E.; Divis, Kristin; Anderson-Bergman, Clifford I.; Abbott, Robert G.; Laros, James H.

More Details

Single-Janus Rod Tracking Reveals the "rock-and-Roll" of Endosomes in Living Cells

Langmuir

Gao, Yuan; Anthony, Stephen M.; Yi, Yi; Li, Wenqian; Yu, Yanqi; Yu, Yan

Endosomes in cells are known to move directionally along microtubules, but their rotational dynamics have rarely been investigated. Even less is known, specifically, about the rotation of nonspherical endosomes. Here we report a single-Janus rod rotational tracking study to reveal the rich rotational dynamics of rod-shaped endosomes in living cells. The rotational reporters were Janus rods that display patches of different fluorescent colors on opposite sides along their long axes. When the Janus rods are wrapped tightly inside endosomes, their shape and optical anisotropy allow the simultaneous measurements of all three rotational angles (in-plane, out-of-plane, and longitudinal) and the translational motion of single endosomes with high spatiotemporal resolutions. We demonstrate that endosomes undergo in-plane rotation and rolling during intracellular transport and that such rotational dynamics are driven by rapid microtubule fluctuations. We reveal for the first time the "rock-and-roll" of endosomes in living cells and how the intracellular environment modifies such rotational dynamics. This study demonstrates a unique application of Janus particles as imaging probes in the elucidation of fundamental biological questions.

More Details

Modal data for the BARC challenge problem Test Report

Rohe, Daniel P.

Modal testing was performed on the uncut BARC structure as a whole and broken into its two sub-assemblies. The structure was placed on soft foam during the test. Excitation was provided with a small modal hammer attached to an actuator. Responses were measured using a 3D Scanning Laser Doppler Vibrometer. Data, shapes, and geometry from this test can be downloaded in Universal File Format from the Sandia Connect SharePoint site.

More Details

Utility of chemical computations in predicting solution free energies of metal ions

Molecular Simulation

Chaudhari, Mangesh I.; Rempe, Susan R.; Pratt, Lawrence R.

Here, we study quasi-chemical theory (QCT) for the free energies of divalent alkaline earth ions (Ba 2+, Sr 2+, Ca 2+, Mg 2+) in water, emphasizing that: (a) interactions between metal ions and proximal water molecules are as strong as traditional chemical effects; (b) QCT builds directly from accessible electronic structure calculations but rests on fully elaborated molecular statistical thermodynamics; (c) QCT offers choices of convenience in identifying coordination numbers for analysis. We investigate utilisation of direct QCT with inner-shell conditioning (Formula presented.), alternative to the traditional nλ=0 conditioning motivated by a generalised van der Waals view. The alternative (Formula presented.) works well: deleterious non-Gaussian effects of van der Waals repulsive interactions are not serious, and the alternative conditioning improves the convenience of QCT calculations. Comparison between ab initio and force field molecular dynamics (AIMD and FFMD) with standard models suggests that FFMD likely exaggerates the anharmonicity in the thermal motion of inner-shell ion-water clusters. Together with the general encouraging support for the harmonic approximations implied by the (Formula presented.) conditioning, that observation helps explain the remarkable success of the cluster-based QCT solution free energies, which do not require assessment of all inner-shell occupancies by simulation.

More Details

Scanning Tunneling Microscopy Study of the Structure and Interaction between Carbon Monoxide and Hydrogen on the Ru(0001) Surface

Journal of Physical Chemistry B

Lechner, Barbara A.J.; Feng, Xiaofeng; Feibelman, Peter J.; Cerda, Jorge I.; Salmeron, Miquel

We use scanning tunneling microscopy (STM) to investigate the spatial arrangement of carbon monoxide (CO) and hydrogen (H) coadsorbed on a model catalyst surface, Ru(0001). We find that at cryogenic temperatures, CO forms small triangular islands of up to 21 molecules with hydrogen segregated outside of the islands. Furthermore, whereas for small island sizes (3-6 CO molecules) the molecules adsorb at hcp sites, a registry shift toward top sites occurs for larger islands (10-21 CO molecules). To characterize the CO structures better and to help interpret the data, we carried out density functional theory (DFT) calculations of the structure and simulations of the STM images, which reveal a delicate interplay between the repulsions of the different species.

More Details

ECP ALCC Quarterly Report (Oct-Dec 2017)

Hu, Jonathan J.

The scientific goal of ExaWind Exascale Computing Project (ECP) is to advance our fundamental understanding of the flow physics governing whole wind plant performance, including wake formation, complex terrain impacts, and turbine-turbine-interaction effects. Current methods for modeling wind plant performance fall short due to insufficient model fidelity and inadequate treatment of key phenomena, combined with a lack of computational power necessary to address the wide range of relevant length scales associated with wind plants. Thus, our ten-year exascale challenge is the predictive simulation of a wind plant composed of O(100) multi-MW wind turbines sited within a 100 km2 area with complex terrain, involving simulations with O(100) billion grid points. The project plan builds progressively from predictive petascale simulations of a single turbine, where the detailed blade geometry is resolved, meshes rotate and deform with blade motions, and atmospheric turbulence is realistically modeled, to a multi turbine array in complex terrain. The ALCC allocation will be used continually throughout the allocation period. In the first half of the allocation period, small (e.g., for testing Kokkos algorithms) and medium (e.g., 10K cores for highly resolved ABL simulations) sized jobs will be typical. In the second half of the allocation period, we will also have a number of large submittals for our resolved-turbine simulations. A challenge in the latter period is that small time step sizes will require long wall-clock times for statistically meaningful solutions. As such, we expect our allocation-hour burn rate to increase as we move through the allocation period.

More Details

Plasma and radiation detection via fiber interferometry

Journal of Applied Physics

Laros, James H.; Bell, Kate S.; Fox, Brian P.; Jones, Scott C.; Knapp, Patrick K.; Gomez, Matthew R.; Porwitzky, Andrew J.; Laity, George R.

Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. Lastly, these changes can diagnose extreme environments in a flexible, time-resolved manner.

More Details

DHS S&T First Responders Group and NATO Counter UAS Proposal Interest Response

Salton, Jonathan R.

The capability, speed, size, and widespread availability of small unmanned aerial systems (sUAS) makes them a serious security concern. The enabling technologies for sUAS are rapidly evolving and so too are the threats they pose to national security. Potential threat vehicles have a small cross-section, and are difficult to reliably detect using purely ground-based systems (e.g. radar or electro-optical) and challenging to target using conventional anti-aircraft defenses. Ground-based sensors are static and suffer from interference with the earth, vegetation and other man-made structures which obscure objects at low altitudes. Because of these challenges, sUAS pose a unique and rapidly evolving threat to national security.

More Details

Interaction of NaOH solutions with silica surfaces

Journal of Colloid and Interface Science

Rimsza, Jessica R.; Jones, Reese E.; Criscenti, Louise C.

Sodium adsorption on silica surfaces depends on the solution counter-ion. Here, we use NaOH solutions to investigate basic environments. Sodium adsorption on hydroxylated silica surfaces from NaOH solutions were investigated through molecular dynamics with a dissociative force field, allowing for the development of secondary molecular species. Furthermore, across the NaOH concentrations (0.01 M – 1.0 M), ~50% of the Na+ ions were concentrated in the surface region, developing silica surface charges between –0.01 C/m2 (0.01 M NaOH) and –0.76 C/m2 (1.0 M NaOH) due to surface site deprotonation. Five inner-sphere adsorption complexes were identified, including monodentate, bidentate, and tridentate configurations and two additional structures, with Na+ ions coordinated by bridging oxygen and hydroxyl groups or water molecules. Coordination of Na+ ions by bridging oxygen atoms indicates partial or complete incorporation of Na+ ions into the silica surface. Residence time analysis identified that Na+ ions coordinated by bridging oxygen atoms stayed adsorbed onto the surface four times longer than the mono/bi/tridentate species, indicating formation of relatively stable and persistent Na+ ion adsorption structures. Such inner-sphere complexes form only at NaOH concentrations of > 0.5 M. Na+ adsorption and lifetimes have implications for the stability of silica surfaces.

More Details

Backscatter particle image velocimetry via optical time-of-flight sectioning

Optics Letters

Paciaroni, Megan E.; Mazumdar, Yi C.; Lynch, Kyle P.; Guildenbecher, Daniel R.

Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow. Thus, scattering noise from outside the measurement volume is eliminated. This PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.

More Details

Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe

Scripta Materialia

Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang; Mehta, Apurva; Hattar, Khalid M.; Boyce, Brad B.

Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.

More Details

Solute stabilization of nanocrystalline tungsten against abnormal grain growth

Journal of Materials Research

Donaldson, Olivia K.; Hattar, Khalid M.; Kaub, Tyler; Thompson, Gregory B.; Trelewicz, Jason R.

Microstructure and phase evolution in magnetron sputtered nanocrystalline tungsten and tungsten alloy thin films are explored through in situ TEM annealing experiments at temperatures up to 1000 °C. Grain growth in unalloyed nanocrystalline tungsten transpires through a discontinuous process at temperatures up to 550 °C, which is coupled to an allotropic phase transformation of metastable β-tungsten with the A-15 cubic structure to stable body centered cubic (BCC) α-tungsten. Complete transformation to the BCC α-phase is accompanied by the convergence to a unimodal nanocrystalline structure at 650 °C, signaling a transition to continuous grain growth. Alloy films synthesized with compositions of W-20 at.% Ti and W-15 at.% Cr exhibit only the BCC α-phase in the as-deposited state, which indicate the addition of solute stabilizes the films against the formation of metastable β-tungsten. Thermal stability of the alloy films is significantly improved over their unalloyed counterpart up to 1000 °C, and grain coarsening occurs solely through a continuous growth process. The contrasting thermal stability between W-Ti and W-Cr is attributed to different grain boundary segregation states, thus demonstrating the critical role of grain boundary chemistry in the design of solute-stabilized nanocrystalline alloys.

More Details

Shear-induced softening of nanocrystalline metal interfaces at cryogenic temperatures

Scripta Materialia

Argibay, Nicolas A.; Curry, John C.; Babuska, Tomas F.; Lu, Ping L.; Chandross, M.; Furnish, Timothy A.; Kustas, Andrew K.

We demonstrate inverse Hall-Petch behavior (softening) in pure copper sliding contacts at cryogenic temperatures. By kinetically limiting grain growth, it is possible to generate a quasi-stable ultra-nanocrystalline surface layer with reduced strength. In situ electrical contact resistance measurements were used to determine grain size evolution at the interface, in agreement with reports of softening in highly nanotwinned copper. We also show evidence of a direct correlation between surface grain size and friction coefficient, validating a model linking friction in pure metals and the transition from dislocation mediated plasticity to grain boundary sliding.

More Details

Phase conjugate digital inline holography (PCDIH)

Optics Letters

Guildenbecher, Daniel R.; Hoffmeister, Kathryn N.G.; Kunzler, William M.; Richardson, Daniel R.; Kearney, Sean P.

We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

More Details

Molecular Dynamics Study of High Symmetry Planar Defect Evolution during Growth of CdTe/CdS Films

Journal of Physical Chemistry C

Zhou, Xiaowang Z.; Chavez, Jose J.; Almeida, Sergio F.; Aguirre, Rodolfo; Zubia, David

The growth dynamics and evolution of intrinsic stacking faults, lamellar, and double positioning twin grain boundaries were explored using molecular dynamics simulations during the growth of CdTe homoepitaxy and CdTe/CdS heteroepitaxy. Initial substrate structures were created containing either stacking fault or one type of twin grain boundary, and films were subsequently deposited to study the evolution of the underlying defect. Results show that during homoepitaxy the film growth was epitaxial and the substrate's defects propagated into the epilayer, except for the stacking fault case where the defect disappeared after the film thickness increased. In contrast, films grown on heteroepitaxy conditions formed misfit dislocations and grew with a small angle tilt (within ∼5°) of the underlying substrate's orientation to alleviate the lattice mismatch. Grain boundary proliferation was observed in the lamellar and double positioning twin cases. Our study indicates that it is possible to influence the propagation of high symmetry planar defects by selecting a suitable substrate defect configuration, thereby controlling the film defect morphology.

More Details

Unraveling the Semiconducting/Metallic Discrepancy in Ni3(HITP)2

Journal of Physical Chemistry Letters

Foster, Michael E.; Allendorf, Mark D.

Here, Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 is a π-stacked layered metal–organic framework material with extended π-conjugation that is analogous to graphene. Published experimental results indicate that the material is semiconducting, but all theoretical studies to date predict the bulk material to be metallic. Given that previous experimental work was carried out on specimens containing complex nanocrystalline microstructures and the tendency for internal interfaces to introduce transport barriers, we apply DFT to investigate the influence of internal interface defects on the electronic structure of Ni3(HITP)2. The results show that interface defects can introduce a transport barrier by breaking the π-conjugation and/or decreasing the dispersion of the electronic bands near the Fermi level. We demonstrate that the presence of defects can open a small gap, in the range of 15–200 meV, which is consistent with the experimentally inferred hopping barrier.

More Details

Self-Assembled One-Dimensional Porphyrin Nanostructures with Enhanced Photocatalytic Hydrogen Generation

Nano Letters

Fan, Hongyou F.; Zhang, Na; Wang, Liang; Wang, Haimiao; Cao, Ronghui; Wang, Jiefei; Bai, Feng

There has been a widespread interest in the preparation of self-assembled porphyrin nanostructures and their ordered arrays, aiming to emulate natural light harvesting processes and energy storage and to develop new nanostructured materials for photocatalytic process. Here, we report controlled synthesis of one-dimensional porphyrin nanostructures such as nanorods and nanowires with well-defined self-assembled porphyrin networks that enable efficient energy transfer for enhanced photocatalytic activity in hydrogen generation. Preparation of these one-dimensional nanostructures is conducted through noncovalent self-assembly of porphyrins confined within surfactant micelles. X-ray diffraction and transmission electron microscopy results reveal that these one-dimensional nanostructures contain stable single crystalline structures with controlled interplanar separation distance. Optical absorption characterizations show that the self-assembly enables effective optical coupling of porphyrins, resulting in much more enhanced optical absorption in comparison with the original porphyrin monomers, and the absorption bands red shift to more extensive visible light spectrum. The self-assembled porphyrin network facilitates efficient energy transfer among porphyrin molecules and the delocalization of excited state electrons for enhanced photocatalytic hydrogen production under visible light.

More Details

Multifunctional Protocells for Enhanced Penetration in 3D Extracellular Tumoral Matrices

Chemistry of Materials

Villegas, Maria R.; Baeza, Alejandro; Noureddine, Achraf; Durfee, Paul N.; Butler, Kimberly B.; Agola, Jacob O.; Brinker, C.J.; Vallet-Regi, Maria

The high density of the extracellular matrix in solid tumors is an important obstacle to nanocarriers for reaching deep tumor regions and has severely limited the efficacy of administrated nanotherapeutics. The use of proteolytic enzymes prior to nanoparticle administration or directly attached to the nanocarrier surface has been proposed to enhance their penetration, but the low in vivo stability of these macromolecules compromises their efficacy and strongly limits their application. Herein, we have designed a multifunctional nanocarrier able to transport cytotoxic drugs to deep areas of solid tumors and once there, to be engulfed by tumoral cells causing their destruction. This system is based on mesoporous silica nanocarriers encapsulated within supported lipid bilayers (SLBs). The SLB avoids premature release of the housed drug while providing high colloidal stability and an easy to functionalize surface. The tumor penetration property is provided by attachment of engineered polymeric nanocapsules that transport and controllably unveil and release the proteolytic enzymes that in turn digest the extracellular matrix, facilitating the nanocarrier diffusion through the matrix. Additionally, targeting properties were endowed by conjugating an antibody specific to the investigated tumoral cells to enhance binding, internalization, and drug delivery. This multifunctional design improves the therapeutic efficacy of the transported drug as a consequence of its more homogeneous distribution throughout the tumoral tissue.

More Details

Bright nanowire single photon source based on SiV centers in diamond

Optics Express

Bielejec, Edward S.; Pacheco, Jose L.; Perry, Daniel L.

The practical implementation of many quantum technologies relies on the development of robust and bright single photon sources that operate at room temperature. The negatively charged silicon-vacancy (SiV−) color center in diamond is a possible candidate for such a single photon source. However, due to the high refraction index mismatch to air, color centers in diamond typically exhibit low photon out-coupling. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion e ciency to single SiV− centers, targeted to fabricated nanowires. The co-localization of single SiV− centers with the nanostructures yields a ten times higher light coupling e ciency than for single SiV− centers in bulk diamond. This enhanced photon out-coupling, together with the intrinsic scalability of the SiV− creation method, enables a new class of devices for integrated photonics and quantum science.

More Details

Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers

Optics Express

Markosyan, Aram H.

Lasing on the D1 transition (62P1/2 → 62S1/2) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D2 transition (62S1/2 → 62P3/2) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D1 transition, di erences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side in Ar/C2H6/Cs.

More Details

Hypersonic Fluid-Structure Interactions on a Slender Cone

AIAA Journal

Casper, Katya M.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Hunter, Patrick H.; Spitzer, Seth M.

Fluid-structure interactions were studies on a 7° half-angle cone in the Sandia Hypersonic Wind Tunnel at Mach 5 and 8 and in the Purdue Boeing/AFOSR Mach 6 Quiet Tunnel. A thin composite panel was integrated into the cone and the response to boundary-layer disturbances was characterized by accelerometers on the backside of the panel. Here, under quiet-flow conditions at Mach 6, the cone boundary layer remained laminar. Artificially generated turbulent spots excited a directionally dependent panel response which would last much longer than the spot duration.

More Details

Numerical methods for the inverse problem of density functional theory

International Journal of Quantum Chemistry

Jensen, Daniel S.; Wasserman, Adam

The inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic model systems.

More Details

RNA-dependent RNA targeting by CRISPR-Cas9

eLife

Strutt, Steven C.; Torrez, Rachel M.; Kaya, Emine; Negrete, Oscar N.; Doudna, Jennifer A.

Double-stranded DNA (dsDNA) binding and cleavage by Cas9 is a hallmark of type II CRISPR-Cas bacterial adaptive immunity. All known Cas9 enzymes are thought to recognize DNA exclusively as a natural substrate, providing protection against DNA phage and plasmids. Here, we show that Cas9 enzymes from both subtypes II-A and II-C can recognize and cleave single-stranded RNA (ssRNA) by an RNA-guided mechanism that is independent of a protospacer-adjacent motif (PAM) sequence in the target RNA. RNA-guided RNA cleavage is programmable and site-specific, and we find that this activity can be exploited to reduce infection by single-stranded RNA phage in vivo. We also demonstrate that Cas9 can direct PAM-independent repression of gene expression in bacteria. These results indicate that a subset of Cas9 enzymes have the ability to act on both DNA and RNA target sequences, and suggest the potential for use in programmable RNA targeting applications.

More Details

Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization

Advanced Materials

Fan, Hongyou F.; Miao, Xiang; Qu, Dan; Yang, Dongxue; Nie, Bing; Zhao, Yikang; Sun, Zaicheng

Multiple-color-emissive carbon dots (CDots) have potential applications in various fields such as bioimaging, light-emitting devices, and photocatalysis. The majority of the current CDots to date exhibit excitation-wavelength-dependent emissions with their maximum emission limited at the blue-light region. Here, a synthesis of multiple-color-emission CDots by controlled graphitization and surface function is reported. The CDots are synthesized through controlled thermal pyrolysis of citric acid and urea. By regulating the thermal-pyrolysis temperature and ratio of reactants, the maximum emission of the resulting CDots gradually shifts from blue to red light, covering the entire light spectrum. Specifically, the emission position of the CDots can be tuned from 430 to 630 nm through controlling the extent of graphitization and the amount of surface functional groups, COOH. The relative photoluminescence quantum yields of the CDots with blue, green, and red emission reach up to 52.6%, 35.1%, and 12.9%, respectively. Furthermore, it is demonstrated that the CDots can be uniformly dispersed into epoxy resins and be fabricated as transparent CDots/epoxy composites for multiple-color- and white-light-emitting devices. This research opens a door for developing low-cost CDots as alternative phosphors for light-emitting devices.

More Details

Uncertainty quantification of wind turbine blade load measurement, estimation, and transformation

Wind Energy Symposium, 2018

Ennis, Brandon L.; Paquette, Joshua P.; White, Jonathan

This paper describes the process of transforming measured blade loads, with force estimation, to wind turbine quantities of interest. Uncertainty quantification on the blade load measurement and force estimation is derived and used to estimate uncertainty on aerodynamic torque and rotor thrust for sample cases. A methodology is defined for calculating mean values and quantifying the uncertainty in these important quantities of interest for wind turbines when your available data includes only blade root moment measurements. This paper is not intended to provide precise values for these uncertainties at the current stage, however, sample measurement uncertainties are defined and used along with representative mean values to identify the sensitivity of uncertainty in torque and thrust to the constituent variables and associated uncertainties. The largest contributors of the uncertainty when using blade strain gage measurements to estimate rotor loads is identified for the sample cases revealing the components that have the largest effect on the resulting quantity of interest’s uncertainty, and those which have negligible effect on the uncertainty.

More Details

The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

MRS Advances

Swift, Peter N.; Bonano, Evaristo J.; Kalinina, Elena A.

Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-century when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.

More Details

Assessing the manufacturing tolerances and uniformity of CMOS compatible metamaterial fabrication

Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics

Musick, Katherine M.; Wendt, J.R.; Resnick, Paul J.; Sinclair, Michael B.; Burckel, David B.

The manufacturing tolerances of a stencil-lithography variant, membrane projection lithography, were investigated. In the first part of this work, electron beam lithography was used to create stencils with a range of linewidths. These patterns were transferred into the stencil membrane and used to pattern metallic lines on vertical silicon faces. Only the largest lines, with a nominal width of 84 nm, were resolved, resulting in 45 ± 10 nm (average ± standard deviation) as deposited with 135-nm spacing. Although written in the e-beam write software file as 84-nm in width, the lines exhibited linewidth bias. This can largely be attributed to nonvertical sidewalls inherent to dry etching techniques that cause proportionally larger impact with decreasing feature size. The line edge roughness can be significantly attributed to the grain structure of the aluminum nitride stencil membrane. In the second part of this work, the spatial uniformity of optically defined (as opposed to e-beam written) metamaterial structures over large areas was assessed. A Fourier transform infrared spectrometer microscope was used to collect the reflection spectra of samples with optically defined vertical split ring from 25 spatially resolved 300 × 300 μm regions in a 1-cm2 area. The technique is shown to provide a qualitative measure of the uniformity of the inclusions.

More Details

A class of simple and effective UQ methods for sparse replicate data applied to the cantilever beam end-to-end UQ problem

AIAA Non-Deterministic Approaches Conference, 2018

Romero, Vicente J.; Weirs, Vincent G.

When very few samples of a random quantity are available from a source distribution or probability density function (PDF) of unknown shape, it is usually not possible to accurately infer the PDF from which the data samples come. Then a significant component of epistemic uncertainty exists concerning the source distribution of random or aleatory variability. For many engineering purposes, including design and risk analysis, one would normally want to avoid inference related under-estimation of important quantities such as response variance, and failure probabilities. Recent research has established the practicality and effectiveness of a class of simple and inexpensive UQ Methods for reasonable conservative estimation of such quantities when only sparse samples of a random quantity are available. This class of UQ methods is explained, demonstrated, and analyzed in this paper within the context of the Sandia Cantilever Beam End-to-End UQ Problem, Part A.1. Several sets of sparse replicate data are involved and several representative uncertainty quantities are to be estimated: A) beam deflection variability, in particular the 2.5 to 97.5 percentile “central 95%” range of the sparsely sampled PDF of deflection; and B) a small exceedance probability associated with a tail of the PDF integrated beyond a specified deflection tolerance.

More Details

Effect of pre-strain, processing conditions, and impact velocity on energy dissipation in silicone foams and rubber

Conference Proceedings of the Society for Experimental Mechanics Series

Sanborn, Brett S.; Song, Bo S.

Silicone foams and rubber are used in a variety of applications to protect internal components from external shock impact. Understanding how these materials mitigate impact energy is a crucial step in designing more effective shock isolation systems for components. In this study, a Kolsky bar with pre-compression and passive radial confinement capabilities was used to investigate the response of silicone foams and rubber subjected to impact loading at different speeds. Using the preload capability, silicone foam samples were subjected to increasing levels of pre-strain. Frequency-based analyses were carried out on results from silicone foams and rubber to study the effect of both pre-strain and material processing conditions on the mechanism of energy dissipation in the frequency domain. Additionally, effects of impact speed on energy dissipation through silicone foams and rubber were investigated.

More Details

Mechanical properties of 3-D LENS and PBF printed stainless steel 316L prototypes

Conference Proceedings of the Society for Experimental Mechanics Series

Lu, Wei-Yang L.; Yang, Nancy Y.; Yee, Joshua K.; Connelly, Kevin C.

Laser Engineered Net Shaping (LENS) and Powder Bed Fusion (PBF) are 3-D additive manufacturing (AM) processes. They are capable of printing metal parts with complex geometries and dimensions effectively. Studies have shown that AM processes create metals with distinctive microstructure features and material properties, which are highly dependent on the processing parameters. The mechanical properties of an AM material may appear to be similar to the corresponding wrought material in some way. This investigation focuses on the relationships among AM process, microstructure features, and material properties. The study involves several AM SS316L components made from 3D LENS and PBF printing. Specimens were taken from different locations and orientations of AM components to obtain the associated tensile properties, including yield, strength, and ductility, and to conduct microstructure analyses.

More Details

A framework for understanding operator decision making in simulated nuclear power plant cyber attacks

Advances in Intelligent Systems and Computing

Adams, Susan S.; Hendrickson, Stacey M.; Turner, Phillip L.

Malicious cyber-attacks are becoming increasingly prominent due to the advance of technology and methods over the last decade. These attacks have the potential to bring down critical infrastructures, such as nuclear power plants (NPP’s), which are so vital to the country that their incapacitation would have debilitating effects on national security, public health, or safety. Despite the devastating effects a cyber-attack could have on NPP’s, there is a lack of understanding as to the effects on the plant from a discreet failure or surreptitious sabotage of components and a lack of knowledge in how the control room operators would react to such a situation. In this project, the authors are collaborating with NPP operators to discern the impact of cyber-attacks on control room operations and lay out a framework to better understand the control room operators’ tasks and decision points.

More Details

Examining how perception of external threat influences the popularity of government leaders

Advances in Intelligent Systems and Computing

Bernard, Michael L.; Naugle, Asmeret B.

This paper seeks to explore the conditions where leaders from open democracies to authoritarian states become more or less popular in response to perceived economic and social threats to society, along with increases in societal (economic and social) hardship and group polarization effects. To further explore these conditions, we used a psycho-social approach to develop a preliminary conceptual model of how the perception of threats, changes in societal conditions, and the polarization of society can concurrently influence the popularity of a government leader.

More Details

Failure of laser welded structures subjected to multiaxial loading: Experimental development

Conference Proceedings of the Society for Experimental Mechanics Series

Antoun, Bonnie R.; Connelly, Kevin C.

A unique experimental capability was developed so combined mechanical and thermal loads could be imposed on specimens that are representative of laser welded structures. The apparatus, instrumentation and specimens were designed concurrently to yield the ability to apply a wide range of loading conditions that accurately replicate the multiaxial stress states produced in laser welded, sealed structures during pressurization at high temperatures up to 800 °C. Axial, radial and torsional loads can be applied individually or in combination, by direct or variable loading paths, to eventual failure of laser weld specimens. Several advantages exist for applying equivalent stress states by mechanical means rather than pressurization with gas, including: repeatability, controlled failure, safe experiments, assessment of loading path dependence, experimental efficiency and overall facility. The experimental design and development are described along with resulting measurements and findings from sample experiments.

More Details

Experimental determination of brucite solubility in NaCl solutions at elevated temperatures

Solution Chemistry: Advances in Research and Applications

Kirkes, Leslie D.; Xiong, Yongliang X.

Salt formations have been recommended for nuclear waste isolation since the 1950‘s by the U.S. National Academy of Science. This recommendation has been implemented in southeast New Mexico where the Waste Isolation Pilot Plant (WIPP) has been built to isolate defense-related transuranic waste. The WIPP is located in a bedded salt formation, the Salado Formation. Placement of crystalline MgO, which hydrates rapidly to form brucite, is the only engineered barrier employed in the WIPP design. The MgO acts as a chemical conditioner in the WIPP repository in controlling the fugacity of carbon dioxide. Similarly, an Mg(OH)2-based engineered barrier is proposed for the German Asse salt mine repository. Thus, the solubility of brucite is of interest to salt repository programs which can expect a variety of temperatures within the repository and a variety of fluids (brines) coming in contact with the waste. Salt repository programs are not the only programs that stand to benefit from the information presented in this book chapter. There are other applications where this information is of interest. In natural environments brucite frequently precipitates from hyperalkaline hydrothermal fluids with high ionic strengths. For instance, brucite chimneys have been observed to form at elevated temperatures in ocean floors. The information presented in this work can be used to accurately model the formation of such brucite chimneys. In this study, we have determined solubilities of brucite as a function of ionic strength in NaCl solutions to I = 5.6 mol•kg-1 at elevated temperatures to 353.15 K. In our solubility measurements, we first independently determined the correction factors for converting pH readings to pHm (negative logarithm of hydrogen ion concentration on a molal scale, mol•kg-1) in NaCl solutions from 0.01 to 5.6 mol•kg-1 at elevated temperatures. Using the SIT model, we obtain the solubility constants for brucite at infinite dilution as a function of temperature, which can be described by the following expression, where T is temperature in K. This expression can be used from 273.15 K to 373.15 K.

More Details

Progressive Failure Analysis of Multi-Directional Composite Laminates Based on the Strain-Rate-Dependent Northwestern Failure Theory

Conference Proceedings of the Society for Experimental Mechanics Series

Schaefer, Joseph D.; Werner, Brian T.; Daniel, Isaac M.

The failure progression of a fiber-reinforced toughened-matrix composite (IM7/8552) was experimentally characterized at quasi-static (10−4 s−1) strain rate using crossply and quasi-isotropic laminate specimens. A progressive failure framework was proposed to benchmark the initiation and progression of damage within composite laminates based on the matrix-dominated failure modes. The Northwestern Failure Theory (NU Theory) was used to provide a set of physics-based failure criteria for predicting the matrix-dominated failure of embedded plies using the lamina-based transverse tension, transverse compression, and shear failure strengths. The NU Theory was used to predict the first-ply-failure (FPF) of embedded plies in [0/904]s and [02/452/−452/902]s laminates for the embedded 90° and 45° plies. The Northwestern Criteria were found to provide superior prediction of the matrix-dominated embedded ply failure for all evaluated cases compared to the classical approaches. The results indicate the potential to use the Northwestern Criteria to provide the predictive baseline for damage propagation in composite laminates based on experimentally identified damage response on a length scale-relevant basis.

More Details

Strain-Rate-Dependent Failure Criteria for Composite Laminates: Application of the Northwestern Failure Theory to Multiple Material Systems

Conference Proceedings of the Society for Experimental Mechanics Series

Schaefer, Joseph D.; Werner, Brian T.; Daniel, Isaac M.

The strain-rate-dependent matrix-dominated failure of multiple fiber-reinforced polymer matrix composite systems was evaluated over the range of quasi-static (10−4) to dynamic (103 s−1) strain rates using available experimental data from literature. The strain rate dependent parameter, m, was found to relate strain-rate dependent lamina behavior linearly to the logarithm of strain rate. The parameter was characterized for a class of laminates comprised of epoxy-based matrices and either carbon or glass fibers, and determined to be approximately 0.055 regardless of fiber type. The strain-rate-dependent Northwestern Failure Criteria were found to fit all data in superior agreement to classical approaches across all strain rates evaluated based on solely lamina-level properties. It was determined that using the determined m value with the Northwestern Failure Criteria provided an accurate prediction of material behavior regardless of fiber type for the identified material class, which significantly reduces the material characterization testing required for the typical building block approach used by industry for computational analysis validation.

More Details

The gem infrasound logger and custom-built instrumentation

Seismological Research Letters

Anderson, Jacob F.; Johnson, Jeffrey B.; Bowman, Daniel B.; Ronan, Timothy J.

We have designed, built, and recorded data with a custom infrasound logger (referred to as the Gem) that is inexpensive, portable, and easy to use. We describe its design process, qualities, and applications in this article. Field instrumentation is a key element of geophysical data collection, and the quantity and quality of data that can be recorded is determined largely by the characteristics of the instruments used. Geophysicists tend to rely on commercially available instruments, which suffice for many important types of fieldwork. However, commercial instrumentation can fall short in certain roles, which motivates the development of custom sensors and data loggers. In particular, we found existing data loggers to be expensive and inconvenient for infrasound campaigns, and developed the Gem infrasound logger in response. In this article, we discuss development of this infrasound logger and the various uses found for it, including projects on volcanoes, high-Altitude balloons, and rivers. Further, we demonstrate that when needed, scientists can feasibly design and build their own specialized instruments, and that doing so can enable them to record more and better data at a lower cost.

More Details

Combining push-forward measures and bayes' rule to construct consistent solutions to stochastic inverse problems

SIAM Journal on Scientific Computing

Wildey, Timothy M.; Butler, T.; Jakeman, John D.

We formulate, and present a numerical method for solving, an inverse problem for inferring parameters of a deterministic model from stochastic observational data on quantities of interest. The solution, given as a probability measure, is derived using a Bayesian updating approach for measurable maps that finds a posterior probability measure that when propagated through the deterministic model produces a push-forward measure that exactly matches the observed probability measure on the data. Our approach for finding such posterior measures, which we call consistent Bayesian inference or push-forward based inference, is simple and only requires the computation of the push-forward probability measure induced by the combination of a prior probability measure and the deterministic model. We establish existence and uniqueness of observation-consistent posteriors and present both stability and error analyses. We also discuss the relationships between consistent Bayesian inference, classical/statistical Bayesian inference, and a recently developed measure-theoretic approach for inference. Finally, analytical and numerical results are presented to highlight certain properties of the consistent Bayesian approach and the differences between this approach and the two aforementioned alternatives for inference.

More Details

Neutron and gamma-ray radiation environments for the annular core research reactor

ASTM Special Technical Publication

Parma, Edward J.

The Sandia National Laboratories' Annular Core Research Reactor (ACRR) is a unique pool-type research reactor that can pulse up to 300 MJ in energy. The ACRR maintains a dry, 9-in. (22.9 cm) diameter central cavity that extends through the center of the core region and allows for experiment irradiations at the peak neutron flux of the core. An epithermal/fast neutron flux exists in the cavity that allows the neutron energy spectrum to be modified to meet the requirements of the experimenter. Using a moderating material such as water or polyethylene in an annular geometry in the cavity allows a greater thermal neutron energy spectrum to be attained. Using a thermal neutron-absorbing material such as boron carbide or cadmium in an annular geometry in the cavity allows for a more epithermal-fast neutron energy spectrum. The gamma-ray fluence can be decreased by adding a high-Z material such as lead in an annular geometry. The gamma-ray fluence can be enhanced by adding a radiative capture material such as cadmium or gadolinium to a moderating material. Both neutron energy spectrum modification and gamma-ray attenuation/enhancement can be attained simultaneously. Different types of spectrum-modifying "buckets" are currently available for use by experimenters, and others can be custom designed and fabricated. This paper presents the results from the neutron and prompt gamma-ray characterization work for several of the environments in the ACRR central cavity, including the free field, polyethylene-lead-graphite, lead-boron-44 in., and cadmium-polyethylene bucket environments, and for the ACRR-Fueled Ring External Cavity-ll. These environments represent typical neutron and gamma-ray spectrum modifications that can be attained at the ACRR.

More Details

Spectrum adjustment results for three environments in the ACRR central cavity using a genetic algorithm

ASTM Special Technical Publication

Vega, Richard M.; Parma, Edward J.

Presented in this report is the description of a new method for neutron energy spectrum adjustment that uses a genetic algorithm to minimize the difference between calculated and measured reaction probabilities. The reaction probability is the integral over all energies of the product of the microscopic reaction cross section with the neutron fluence. The measured reaction probabilities are found using neutron activation analysis. The method adjusts a trial spectrum provided by the user that typically is calculated using a neutron transport code such as Monte Carlo N-Particle. Observed benefits of this method over currently existing methods include: (a) the reduction in unrealistic artifacts in the spectral shape when compared to iterative unfold approaches such as are used in the SAND-II code or to least squares approaches when an accurate prior spectrum covariance is not available; and (b) a reduced sensitivity to increases in the energy resolution of the derived spectrum. This report presents the adjustment results for various spectrum-altering bucket environments in the central cavity of the Annular Core Research Reactor. In each case, the results are compared to those generated using LSL-M2, which is a code commonly used for spectrum adjustment. The genetic algorithm produces spectrum-averaged reaction probabilities comparable to those resulting from LSL-M2. The splicing of local segments of the a priori spectrum, which is part of the genetic algorithm, permits the resulting spectrum adjustment to avoid introducing severe narrow energy-width shape artifacts without the requirement of a covariance matrix for the prior spectrum.

More Details

CO-60 filter box optimization

ASTM Special Technical Publication

Depriest, Kendall D.; Vehar, David W.; Laub, Thomas W.

The measurement of photon dose in pure gamma-ray and mixed (neutron/ gamma) field environments relies heavily on calibration of thermoluminescent dosimeters (TLDs) in cobalt-60 (Co-60) gamma irradiation environments. One of the principal means of reducing the gamma dose measurement uncertainty in Sandia National Laboratories' reactor environments is careful calibration of the CaF2:Mn TLDs used in the test environment. One issue that arises is that Co-60 gamma fields used for calibration universally have a low energy photon component. The scattered photons that make up the low energy photon component are a principal source of measurement error for the TLD calibration. ASTM E1249, Standard Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources, describes a method that utilizes photon spectrum filter boxes to enclose devices under test that can reduce the measurement error during TLD calibration as well as during normal radiation testing of electronic components in the gamma field. Using a silicon sensor representative of a CMOS-7 technology, a series of calculations was performed for single-layer, two-layer, and three-layer filters to identify a filter box that improves the silicon dose-to-kerma ratio (that is, the filter reduces the low energy photon component in the Co-60 radiation field) in the sensor over the current filter box design. The results of the parameter study in this paper will be used to plan experimental studies in the Co-60 gamma fields used for calibration.

More Details

Towards high energy density glass capacitors

Ceramic Transactions

Wilke, Rudeger H.T.; Casias, Adrian L.; Fitzgerald, Carl F.; Dean, Amanda N.; Timon, Robert P.

The reports of 35 J/cc energy density in thinned alkali-free glasses make it a top candidate for next generation high energy density capacitors. In this article, we demonstrate a scalable process to take currently available commercial glass and fabricate fully packaged capacitors. These prototypes have 0.086 J/cc energy density at 1000 V, making them competitive with some commercially available ceramic capacitors. This was achieved while focusing on developing a process for thinning and handling the glass and without minimization of the inactive volume of the capacitor. These results portend the achievement of significantly higher energy densities in devices made from alkali-free glass.

More Details

Rigorous uncertainty propagation using a dosimetry transfer calibration

ASTM Special Technical Publication

Griffin, Patrick J.; Vehar, David W.; Parma, Edward J.; Hahn, Kelly D.

The process of determining the uncertainty in the neutron fluence from the measured activity of a dosimetry monitor is reviewed and the importance of treating the energy-dependent correlation is illustrated using several representative neutron fields. The process of determining the uncertainty in the neutron fluence when a transfer calibration is used is then detailed. The conversion factor, when a transfer calibration is used, has a term that has an integral over the cross section appearing in both the numerator and the denominator. This term introduces a nonlinear dependence on the cross section within the conversion factor and an explicit correlation between the terms appearing in the numerator and denominator of the conversion factor. A method for rigorously treating this nonlinear uncertainty propagation is presented. This method is based upon utilizing the covariance matrix for the cross section and utilizing a statistical sampling approach based on a Cholesky transformation of this covariance matrix. This methodology is then applied to the determination of the uncertainty from a transfer calibration for a set of nine neutron spectra based upon using the 32S(n,p)32P reaction and a transfer calibration in a 2 5 2Cf standard benchmark neutron field. A very strong correlation is found in the cross-section terms as they appear in the numerator and in the denominator. When a rigorous treatment is used to propagate the uncertainty due to the cross section for the dosimetry monitor, the uncertainty in the conversion factor is reduced by a factor of more than ten times from a worst-case approach that treats the uncertainty components in the numerator and denominator as uncorrelated. This ten times difference is also seen when the comparison is made between a rigorous treatment and a treatment of the cross-section contributions where the numerator and denominator are treated as uncorrelated (i.e., when compared to a root-mean-square approach).

More Details

Practical considerations for reactor spectrum characterization: Lessons learned

ASTM Special Technical Publication

Quirk, Thomas J.; Parma, Edward J.

The Annular Core Research Reactor (ACRR) at Sandia National Laboratories provides experimenters with a unique platform for irradiations. Its central cavity is wide enough to accommodate spectrum-modifying materials, commonly referred to as buckets. The addition of hydrogenous moderators, such as polyethylene or water, can cause considerable thermalization of the free field neutron spectrum. Conversely, thick annular regions of strong, thermal absorbers, such as boron or cadmium, create a faster neutron spectrum inside. Similarly, the gamma-ray fluence can be attenuated by adding high-Z materials or enhanced through radiative capture in cadmium or gadolinium. Novel configurations of buckets allow simultaneous neutron energy spectrum modification and gamma-ray attenuation. As such, different radiation environments can exist at ACRR's core centerline. Recent efforts have produced detailed characterizations of several neutron- and gamma-ray spectrum-modifying buckets for the ACRR central cavity, including: the free field; the 44-in.-tall lead-boron carbide bucket (fast neutron, attenuated photon); the polyethylene-lead-graphite bucket (thermalized neutrons, attenuated photon); and the Cd-Poly bucket (cadmium polyethylene lined bucket used to enhance photon production). Dedicated opportunities to perform multiple characterizations occurred somewhat infrequently, which afforded the authors the ability to hone techniques for performing these tests. Each neutron spectrum characterization generally followed both ASTM E720, Standard Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics, and ASTM E721, Standard Guide for Determining Neutron Energy Spectra from Neutron Sensors for Radiation-Hardness Testing of Electronics. This paper presents some practical lessons learned throughout these characterizations-both experimental and computational.

More Details

Towards a scalable multifidelity simulation approach for electrokinetic problems at the mesoscale

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hong, Brian D.; Perego, Mauro P.; Bochev, Pavel B.; Frischknecht, Amalie F.; Phillips, Edward G.

In this work we present a computational capability featuring a hierarchy of models with different fidelities for the solution of electrokinetics problems at the micro-/nano-scale. A multifidelity approach allows the selection of the most appropriate model, in terms of accuracy and computational cost, for the particular application at hand. We demonstrate the proposed multifidelity approach by studying the mobility of a colloid in a micro-channel as a function of the colloid charge and of the size of the ions dissolved in the fluid.

More Details

A virtual control coupling approach for problems with non-coincident discrete interfaces

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Bochev, Pavel B.; Kuberry, Paul A.; Peterson, Kara J.

Independent meshing of subdomains separated by an interface can lead to spatially non-coincident discrete interfaces. We present an optimization-based coupling method for such problems, which does not require a common mesh refinement of the interface, has optimal H1 convergence rates, and passes a patch test. The method minimizes the mismatch of the state and normal stress extensions on discrete interfaces subject to the subdomain equations, while interface “fluxes” provide virtual Neumann controls.

More Details

It’s not the heat, it’s the humidity: Scheduling resilience activity at scale

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Widener, Patrick W.; Ferreira, Kurt B.; Levy, Scott L.

Maintaining the performance of high-performance computing (HPC) applications with the expected increase in failures is a major challenge for next-generation extreme-scale systems. With increasing scale, resilience activities (e.g. checkpointing) are expected to become more diverse, less tightly synchronized, and more computationally intensive. Few existing studies, however, have examined how decisions about scheduling resilience activities impact application performance. In this work, we examine the relationship between the duration and frequency of resilience activities and application performance. Our study reveals several key findings: (i) the aggregate amount of time consumed by resilience activities is not an effective metric for predicting application performance; (ii) the duration of the interruptions due to resilience activities has the greatest influence on application performance; shorter, but more frequent, interruptions are correlated with better application performance; and (iii) the differential impact of resilience activities across applications is related to the applications’ inter-collective frequencies; the performance of applications that perform infrequent collective operations scales better in the presence of resilience activities than the performance of applications that perform more frequent collective operations. This initial study demonstrates the importance of considering how resilience activities are scheduled. We provide critical analysis and direct guidance on how the resilience challenges of future systems can be met while minimizing the impact on application performance.

More Details

Damage evolution in 304L stainless steel partial penetration laser welds

Conference Proceedings of the Society for Experimental Mechanics Series

Kramer, Sharlotte L.; Jones, Amanda; Emery, John M.; Karlson, Kyle N.

Partial penetration laser welds join metal surfaces without additional filler material, providing hermetic seals for a variety of components. The crack-like geometry of a partial penetration weld is a local stress riser that may lead to failure of the component in the weld. Computational modeling of laser welds has shown that the model should include damage evolution to predict the large deformation and failure. We have performed interrupted tensile experiments both to characterize the damage evolution and failure in laser welds and to aid computational modeling of these welds. Several EDM-notched and laser-welded 304L stainless steel tensile coupons were pulled in tension, each one to a different load level, and then sectioned and imaged to show the evolution of damage in the laser weld and in the EDM-notched parent 304L material (having a similar geometry to the partial penetration laser-welded material). SEM imaging of these specimens revealed considerable cracking at the root of the laser welds and some visible micro-cracking in the root of the EDM notch even before peak load was achieved in these specimens. The images also showed deformation-induced damage in the root of the notch and laser weld prior to the appearance of the main crack, though the laser-welded specimens tended to have more extensive damage than the notched material. These experiments show that the local geometry alone is not the cause of the damage, but also microstructure of the laser weld, which requires additional investigation.

More Details

Towards a scalable multifidelity simulation approach for electrokinetic problems at the mesoscale

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hong, Brian H.; Perego, Mauro P.; Bochev, Pavel B.; Frischknecht, Amalie F.; Phillips, Edward G.

In this work we present a computational capability featuring a hierarchy of models with different fidelities for the solution of electrokinetics problems at the micro-/nano-scale. A multifidelity approach allows the selection of the most appropriate model, in terms of accuracy and computational cost, for the particular application at hand. We demonstrate the proposed multifidelity approach by studying the mobility of a colloid in a micro-channel as a function of the colloid charge and of the size of the ions dissolved in the fluid.

More Details

Effect of Process Induced Stresses on Measurement of FRP Strain Energy Release Rates

Conference Proceedings of the Society for Experimental Mechanics Series

Werner, Brian T.; Nelson, Stacy M.; Briggs, Timothy B.

Fiber reinforced polymer composites are frequently used in hybrid structures where they are co-cured or co-bonded to dissimilar materials. For autoclave cured composites, this interface typically forms at an elevated temperature that can be quite different from the part’s service temperature. As a result, matrix shrinkage and CTE mismatch can produce significant residual stresses at this bi-material interface. This study shows that the measured critical strain energy release rate, Gc, can be quite sensitive to the residual stress state of this interface. If designers do not properly account for the effect of these process induced stresses, there is danger of a nonconservative design. Tests including double cantilever beam (DCB) and end notched flexure (ENF) were conducted on a co-cured GFRP-CFRP composite panel across a wide range of temperatures. These results are compared to tests performed on monolithic GFRP and CFRP panels.

More Details

Communication enabled—fast acting imbalance reserve (CE-FAIR)

IEEE Transactions on Power Systems

Wilches-Bernal, Felipe; Concepcion, Ricky J.; Neely, Jason C.; Ellis, Abraham E.

This letter presents a new frequency control strategy that takes advantage of communications and fast responding resources such as photovoltaic generation, energy storage, wind generation, and demand response, termed collectively as converter interfaced generators (CIGs). The proposed approach uses an active monitoring of power imbalances to rapidly redispatch CIGs. This approach differs from previously proposed frequency control schemes in that it employs feed-forward control based on a measured power imbalance rather than relying on a frequency measurement. Time-domain simulations of the full Western Electricity Coordinating Council system are conducted to demonstrate the effectiveness of the proposed method, showing improved performance.

More Details

Inter-plume aerodynamics for gasoline spray collapse

International Journal of Engine Research

Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; Frank, Jonathan H.

The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel-air mixing. However, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtained using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. The effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.

More Details

Effect of Process Induced Stresses on Measurement of FRP Strain Energy Release Rates

Conference Proceedings of the Society for Experimental Mechanics Series

Werner, Brian T.; Nelson, Stacy M.; Briggs, Timothy B.

Fiber reinforced polymer composites are frequently used in hybrid structures where they are co-cured or co-bonded to dissimilar materials. For autoclave cured composites, this interface typically forms at an elevated temperature that can be quite different from the part’s service temperature. As a result, matrix shrinkage and CTE mismatch can produce significant residual stresses at this bi-material interface. This study shows that the measured critical strain energy release rate, Gc, can be quite sensitive to the residual stress state of this interface. If designers do not properly account for the effect of these process induced stresses, there is danger of a nonconservative design. Tests including double cantilever beam (DCB) and end notched flexure (ENF) were conducted on a co-cured GFRP-CFRP composite panel across a wide range of temperatures. These results are compared to tests performed on monolithic GFRP and CFRP panels.

More Details

Absence of mineral colloids in high ionic strength solutions associated with salt formations: Experimental determination and applications for nuclear waste management

Solution Chemistry: Advances in Research and Applications

Xiong, Yongliang X.; Kirkes, Leslie D.; Kim, Sungtae K.; Marrs, Cassandra M.; Knox, Jandi L.; Dean, Justin; Nemer, Martin N.; Deng, Haoran

Radionuclides and heavy metals easily sorb onto colloids. This phenomenon can have a beneficial impact on environmental clean-up activities if one is trying to scavenge hazardous elements from soil for example. On the other hand, it can have a negative impact in cases where one is trying to immobilize these hazardous elements and keep them isolated from the public. Such is the case in the field of radioactive waste disposal. Colloids in the aqueous phase in a radioactive waste repository could facilitate transport of contaminants including radioactive nuclides. Salt formations have been recommended for nuclear waste isolation since the 1950's by the U.S. National Academy of Science. In this capacity, salt formations are ideal for isolation of radioactive waste. However, salt formations contain brine (the aqueous phase), and colloids could possibly be present. If present in the brines associated with salt formations, colloids are highly relevant to the isolation safety concept for radioactive waste. The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico is a premier example where a salt formation is being used as the primary isolation barrier for radioactive waste. WIPP is a U.S. Department of Energy geological repository for the permanent disposal of defenserelated transuranic (TRU) waste. In addition to the geological barrier that the bedded salt formation provides, an engineered barrier of MgO added to the disposal rooms is used in WIPP. Industrial-grade MgO, consisting mainly of the mineral periclase, is in fact the only engineered barrier certified by the U.S. Environmental Protection Agency (EPA) for emplacement in the WIPP. Of interest, an Mg(OH)2-based engineered barrier consisting mainly of the mineral brucite is to be employed in the Asse repository in Germany. The Asse repository is located in a domal salt formation and is another example of using salt formations for disposal of radioactive waste. Should colloids be present in salt formations, they would facilitate transport of contaminants including actinides. In the case of colloids derived from emplaced MgO, it is the hydration and carbonation products that are of interest. These colloids could possibly form under conditions relevant in particular to the WIPP. In this chapter, we report a systematic experimental study performed at Sandia National Laboratories in Carlsbad, New Mexico, related to the WIPP engineered barrier, MgO. The aim of this work is to confirm the presence or absence of mineral fragment colloids related to MgO in high ionic strength solutions (brines). The results from such a study provides information about the stability of colloids in high ionic strength solutions in general, not just for the WIPP. We evaluated the possible formation of mineral fragment colloids using two approaches. The first approach is an analysis of long-term MgO hydration and carbonation experiments performed at Sandia National Laboratories (SNL) as a function of equivalent pore sizes. The MgO hydration products include Mg(OH)2 (brucite) and Mg3 Cl(OH)5•4H2O (phase 5), and the carbonation product includes Mg5(CO3)4(OH)2•4H2O (hydromagnesite). All these phases contain magnesium. Therefore, if mineral fragment colloids of these hydration and carbonation products were formed in the SNL experiments mentioned above, magnesium concentrations in the filtrate from the experiments would show a dependence on ultrafiltration. In other words, there would be a decrease in magnesium concentrations as a function of ultrafiltration with decreasing molecular weight (MW) cut-offs for the filtration. Therefore, we performed ultrafiltration on solution samples from the SNL hydration and carbonation experiments as a function of equivalent pore size. We filtered solutions using a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. Our results demonstrate that the magnesium concentrations remain constant with decreasing MW cutoffs, implying the absence of mineral fragment colloids. The second approach uses spiked Cs+ to indicate the possible presence of mineral fragment colloids. Cs+ is easily absorbed by colloids. Therefore, we added Cs+ to a subset of SNL MgO hydration and carbonation experiments. Again, we filtered the solutions with a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. This time we measured the concentrations of Cs. The concentrations of Cs do not change as a function of MW cut-offs, indicating the absence of colloids from MgO hydration and carbonation products. Therefore, both approaches demonstrate the absence of mineral fragment colloids from MgO hydration and carbonation products. Based on our experimental results, we acknowledge that mineral fragment colloids were not formed in the SNL MgO hydration and carbonation experiments, and we further conclude that high ionic strength solutions associated with salt formations prevent the formation of mineral fragment colloids. This is due to the fact that the high ionic strength solutions associated with salt formations have high concentrations of both monovalent and divalent metal ions that are orders of magnitude higher than the critical coagulation concentrations for mineral fragment colloids. The absence of mineral fragment colloids in high ionic strength solutions implies that contributions from mineral fragment colloids to the total mobile source term of radionuclides in a salt repository are minimal.

More Details

Stochastic Gain Degradation in III-V Heterojunction Bipolar Transistors Due to Single Particle Displacement Damage

IEEE Transactions on Nuclear Science

Vizkelethy, Gyorgy V.; Bielejec, Edward S.; Aguirre, Brandon A.

As device dimensions decrease, single displacement effects become more important. We measured the gain degradation in III-V heterojunction bipolar transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on gain change. From the single steps in the inverse gain (which is proportional to the number of defects), we calculated cumulative distribution functions to help determine design margins. The displacement process was modeled using the MARLOWE binary collision approximation code. The entire structure of the device was modeled and the defects in the base-emitter junction were counted to be compared with the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.

More Details

Correlation of a Bipolar-Transistor-Based Neutron Displacement Damage Sensor Methodology with Proton Irradiations

IEEE Transactions on Nuclear Science

Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.; Griffin, Patrick J.; Schrimpf, Ronald D.

A bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This paper significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV X-ray and/or cobalt-60 gamma ray irradiations. Nonionizing energy loss calculations adequately approximate the correlations between particle and device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.

More Details

Global sensitivity analysis and estimation of model error, toward uncertainty quantification in scramjet computations

AIAA Journal

Huan, Xun H.; Safta, Cosmin S.; Sargsyan, Khachik S.; Geraci, Gianluca G.; Eldred, Michael S.; Vane, Zachary P.; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, H.N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertainparameters involvedandthe high computational costofflow simulations. These difficulties are addressedin this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying themin the current studyto large-eddy simulations ofajet incrossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system's stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

More Details

Ensemble grouping strategies for embedded stochastic collocation methods applied to anisotropic diffusion problems

SIAM-ASA Journal on Uncertainty Quantification

D'Elia, Marta D.; Phipps, Eric T.; Edwards, Harold C.; Hu, Jonathan J.; Rajamanickam, Sivasankaran R.

Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162-C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble when applying iterative linear solvers to parameterized and stochastic linear systems. In this work we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen-Loève expansions. We demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.

More Details

Lattice dynamics and thermomechanical properties of zirconium(IV) chloride: Evidence for low-temperature negative thermal expansion

Chemical Physics Letters

Kim, Eunja; Weck, Philippe F.; Borjas, Rosendo; Poineau, Frederic

The crystal structure, lattice dynamics and themomechanical properties of bulk monoclinic zirconium tetrachloride (ZrCl4) have been investigated using zero-damping dispersion-corrected density functional theory [DFT-D3(zero)]. Phonon analysis reveals that ZrCl4(cr) undergoes negative thermal expansion (NTE) near T≈10 K, with a coefficient of thermal expansion of α=-1.2 ppm K−1 and a Grüneisen parameter of γ=-1.1. The bulk modulus is predicted to vary from K0=8.7 to 7.0 GPa in the temperature range 0–550 K. The isobaric molar heat capacity derived from phonon calculations within the quasi-harmonic approximation is in fair agreement with existing calorimetric data.

More Details

An improved formulation for hybridizable discontinuous Galerkin fluid-structure interaction modeling with reduced computational expense

Communications in Computational Physics

Miller, Scott T.; Sheldon, Jason P.; Pitt, Jonathan S.

This work presents two computational efficiency improvements for the hybridizable discontinuous Galerkin (HDG) fluid-structure interaction (FSI) model presented by Sheldon et al. A new formulation for the solid is presented that eliminates the global displacement, resulting in the velocity being the only global solid variable. This necessitates a change to the solid-mesh displacement coupling, which is accounted for by coupling the local solid displacement to the global mesh displacement. Additionally, the mesh basis and test functions are restricted to linear polynomials, rather than being equal-order with the fluid and solid. This change increases the computational efficiency dynamically, with greater benefit the higher order the computation, when compared to an equal-order formulation. These two improvements result in a 50% reduction in the number of global degrees of freedom for high-order simulations for both the fluid and solid domains, as well as an approximately 50% reduction in the number of local fluid domain degrees of freedom for high-order simulations. The new, more efficient formulation is compared against that from Sheldon et al. and negligible change of accuracy is found.

More Details

Wind turbine wake definition and identification using velocity deficit and turbulence profile

Wind Energy Symposium, 2018

Panossian, Nadia P.; Herges, Thomas H.; Maniaci, David C.

A method of wake determination is proposed where a wind turbine rotor wake is defined as the downstream wind velocity deficit region surrounded by increased turbulence creating a local maxima ring of turbulence. This definition creates a non-arbitrary wake boundary and provides criteria for more consistent wake identification and tracking than other methods. The definitive boundary allows for the separation of atmospheric regions and wake regions, facilitating the characterization of wake flow as it differs from atmospheric flow even at high wind turbine yaw offsets and in unstable atmospheric conditions. This definition can also be used to evaluate the effect of wakes on downstream turbines or wake control technologies such as wake steering. The proposed wake tracking method was shown to be robust for measurements at different inflow conditions and matched well with simulated, known wake positions.

More Details

Radiological Dispersal Devices

Bosey, Lynita J.

The purpose of this paper is to review what a ‘dirty bomb” is and what the challenges are to actually developing and utilizing one. Additionally, it will review whether there are other radiological options for the non-state actor desiring to utilize them as a WMD. Integrated in this study and analysis is to determine if a non-state actor has the potential for better access to, and the ability to utilize, certain radiological WMDs.

More Details

Uncertainty quantification framework for wind turbine wake measurements with a scanning lidar

Wind Energy Symposium, 2018

Herges, Thomas H.; Maniaci, David C.; Naughton, Brian T.

Sandia National Laboratories and the National Renewable Energy Laboratory conducted a field campaign at the Scaled Wind Farm Technology (SWiFT) Facility using a customized scanning lidar from the Technical University of Denmark. The results from this field campaign were used to assess the predictive capability of computational models to capture wake dissipation and wake trajectory downstream of a wind turbine. The present work used large-eddy simulations of the wind turbine wake and a virtual SpinnerLidar to quantify the uncertainty of wind turbine wake position due to the line-of-sight sampling and probe volume averaging effects of the lidar. The LES simulations were of the SWiFT wind turbine at both a 0° and 30° yaw offset with a stable inflow. The wake position extracted from the simulated lidar sampling had an uncertainty of 2.8 m and m as compared to the wake position extracted from the full velocity field with 0° and 30° yaw offset, respectively. The larger uncertainty in calculated wake position of the 30° yaw offset case was due to the increased angle of the wake position relative to the axial flow direction and the resulting decrease in the line-of-sight velocity relative the axial velocity.

More Details

Modeling Heat Transfer and Pressurization of Polymeric Methylene Diisocyanate (PMDI) Polyurethane Foam in a Sealed Container

Scott, Sarah N.

Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. It can be advantageous to surround objects of interest, such as electronics, with foams in a hermetically sealed container to protect the electronics from hostile environments, such as a crash that produces a fire. However, in fire environments, gas pressure from thermal decomposition of foams can cause mechanical failure of the sealed system. In this work, a detailed study of thermally decomposing polymeric methylene diisocyanate (PMDI)-polyether-polyol based polyurethane foam in a sealed container is presented. Both experimental and computational work is discussed. Three models of increasing physics fidelity are presented: No Flow, Porous Media, and Porous Media with VLE. Each model us described in detail, compared to experiment, and uncertainty quantification is performed. While the Porous Media with VLE model matches has the best agreement with experiment, it also requires the most computational resources.

More Details

Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures

Deveci, Mehmet D.; Trott, Christian R.; Rajamanickam, Sivasankaran R.

Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.

More Details

Consistent turbulent boundary layer wall pressure spectra and coherence functions

AIAA Aerospace Sciences Meeting, 2018

DeChant, Lawrence J.; Smith, Justin S.

Fluctuating boundary layer pressure fluctuations are an important loading component for high speed reentry vehicles. Characterization of the unsteady time series requires access to longitudinal and lateral coherence expressions as well spatial correlation and frequency power-spectral density models. Coherence, spatial correlation and frequency power spectral density are related as through their cross-spectral density definitions. However the frequency PSD and the spatial correlation are often based upon measurements or approximate models which may introduce bias in the associated derived coherence function. Here, we examine the effect of measurement and model form associated with frequency spectrum and correlation on the longitudinal and lateral coherence for supersonic pressure fluctuation flow fields. The widely utilized Corcos separable coherence model functional form has been employed in this study. The associated integral equations which relate coherence and correlation are solved using a simple iterative approach. To minimize distortion in results due to computational issues a high accuracy numerical integration procedure is utilized. Despite a more robust computational approach, solution accuracy is limited for some problems by the functional form of the longitudinal coherence model. These limitations are discussed in detail. This overall approach is applied to Mach 5 and Mach 8 seven degree sharp cone pressure fluctuation measurements. Estimates for the parameters associated with the Corcos coherence expressions are typically larger than more traditional values especially for the longitudinal coherence. These larger values suggest that fluctuations streamwise correlation length is small. Limited longitudinal correlation can be associated with shock influence and is explored as a possible cause.

More Details

Effects of cavity width on resonance dynamics using planform time-resolved PIV and PSP

AIAA Aerospace Sciences Meeting, 2018

Wagner, Justin W.; Casper, Katya M.; Beresh, Steven J.; Lynch, Kyle P.; Spillers, Russell W.; Spitzer, Seth M.; Demauro, Edward P.

The spanwise variation of resonance dynamics in the Mach 0.94 flow over a finite-span cavity of variable length-to-width ratio was explored using time-resolved particle image velocimetry (TR-PIV) in a planform plane above the cavity and time-resolved pressure sensitive paint (TR-PSP) on the floor and adjacent exterior surface. The TR-PIV showed a significant variation in resonant fluctuations to occur across the span of the cavity, which appears to arise from spillage vortices stemming from finite width effects. Thus, the spanwise variation was a strong function of the cavity aspect ratio and was only weakly dependent on the cavity mode number. Modal streamwise velocity fluctuations in the spillage vortices showed large peaks at modes one through three, indicating that resonance dynamics, and not just broadband turbulence effects, are prevalent near the sidewalls. Large peaks in modal pressures were also present on the walls just outside of the cavity. Interestingly, prominent peaks at the mode frequencies were observed in the spanwise velocity spectra as well. These peaks were strongest near the cavity sidewalls suggesting a coupling between the resonance mechanism and the spillage vortices.

More Details

Sandia National Laboratories Strategic Context Workshop Series 2017: National Security Futures for Strategic Thinking

Keller, Elizabeth J.; Roll, Elizabeth R.; Aamir, Munaf S.; Bull, Diana L.; Deland, Sharon M.; Haddal, Chad H.; Passell, Howard D.; Foley, John T.; Harwell, Amber S.; Otis, Monique O.; Backus, George A.; Jones, Wendell J.; Bawden, Michael G.; Craft, Richard L.; Kistin, David J.; Martin, Jeffrey B.; McNicol, Bradley R.; Vannoni, Michael G.; Trost, Lawrence C.; Tsao, Jeffrey Y.; Weaver, Karla W.

In August 2017, Sandia convened five workshops to explore the future of advanced technologies and global peace and security through the lenses of deterrence, information, innovation, nonproliferation, and population and Earth systems.

More Details

Multifidelity statistical analysis of large eddy simulations in scramjet computations

AIAA Non-Deterministic Approaches Conference, 2018

Huan, Xun H.; Geraci, Gianluca G.; Safta, Cosmin S.; Eldred, Michael S.; Sargsyan, Khachik S.; Vane, Zachary P.; Oefelein, Joseph C.; Najm, H.N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress towards optimal engine designs requires accurate and computationally affordable flow simulations, as well as uncertainty quantification (UQ). While traditional UQ techniques can become prohibitive under expensive simulations and high-dimensional parameter spaces, polynomial chaos (PC) surrogate modeling is a useful tool for alleviating some of the computational burden. However, non-intrusive quadrature-based constructions of PC expansions relying on a single high-fidelity model can still be quite expensive. We thus introduce a two-stage numerical procedure for constructing PC surrogates while making use of multiple models of different fidelity. The first stage involves an initial dimension reduction through global sensitivity analysis using compressive sensing. The second stage utilizes adaptive sparse quadrature on a multifidelity expansion to compute PC surrogate coefficients in the reduced parameter space where quadrature methods can be more effective. The overall method is used to produce accurate surrogates and to propagate uncertainty induced by uncertain boundary conditions and turbulence model parameters, for performance quantities of interest from large eddy simulations of supersonic reactive flows inside a scramjet engine.

More Details

2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base

Griffith, Stacy R.

The 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

More Details

Exploiting Polarization Wobble in Sinuous Antennas for the Detection of Linear Scatterers in Ground Penetrating Radar Applications

2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018 - Proceedings

Crocker, Dylan A.; Scott, Waymond R.

Cross- polarized returns are desirable for detecting buried asymmetrical targets with GPR systems in order to increase sensitivity. However, measuring cross-pol returns can be strongly dependent on orientation angle due to polarization mismatch. The fields transmitted by sinuous antennas are known to exhibit polarization wobble over frequency. This is often considered an undesired characteristic; however, this behavior can be exploited in order to mitigate the strong dependence of the cross-pol returns on the orientation angle.

More Details

Data-driven compressed sensing tomography

IS and T International Symposium on Electronic Imaging Science and Technology

Kassubeck, Marc; Wenger, Stephan; Jennings, Christopher A.; Gomez, Matthew R.; Schwarz, Jens S.; Magnor, Marcus

This paper presents a new method for tomographic reconstruction of volumes from sparse observational data. Application scenarios can be found in astrophysics, plasma physics, or whenever the amount of obtainable measurement is limited. In the extreme only a single view of the phenomenon may be available. Our method uses input image data together with complex, user-definable assumptions about 3D density distributions. The parameter values of the user-defined model are fitted to the input image. This allows for incorporating complex, data-driven assumptions, such as helical symmetry, into the reconstruction process. We present two different sparsity-based reconstruction approaches. For the first method, novel virtual views are generated prior to tomography reconstruction. In the second method, voxel groups of similar target densities are defined and used for group sparsity reconstruction. We evaluate our method on real data of a high-energy plasma experiment and show that the reconstruction is consistent with the available measurement and 3D density assumptions. An additional experiment on simulated data demonstrates possible gains when adding an additional view to the presented reconstruction methods.

More Details

A Stable Low Frequency Time Domain EFIE with Weighted Continuity Equation

2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018 - Proceedings

Roth, Thomas E.; Chew, Weng C.

A new time domain electric field integral equation is proposed to solve low frequency problems. This new formulation uses the current and charge densities as unknowns, with a form of the continuity equation that is weighted by a Green's function as a second constraining equation. This equation can be derived from a scalar potential equivalence principle integral equation, which is in contrast to the traditional strong form of the continuity equation that has been used in an ad-hoc manner in the augmented EFIE. Numerical results demonstrate the improved stability of this approach, as well as the accuracy at low frequencies.

More Details

Nuclear facility safety enhancement using Sandia National Laboratories’ computer codes

International Conference on Nuclear Engineering, Proceedings, ICONE

Laros, James H.

This paper describes the ongoing study of nuclear facility safety enhancement using Sandia National Laboratories’ (SNL) computer codes, supported by U.S. Department of Energy (DOE) Nuclear Safety Research and Development (NSR&D) Program. Continued DOE NSR&D support, since 2014 has allowed the use of the SNL engineering code suite (SIERRA Mechanics) to further substantiate data in the DOE Handbook published in 1994: DOE-HDBK-3010-94, “Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities.” The use of SIERRA codes allows for a better understanding of the mechanics, dynamics, chemistry and overall physics of airborne release scenarios. SIERRA codes provide insights into the contributing phenomena of source term releases from events such as liquid fires. The 1994 Handbook documents small-scaled, bench-top and limited experiments involving liquid fires, powder spills, pressurized releases, and mechanical insult-induced fragmentation scenarios. Data recorded from these scenarios has been substantiated using SIERRA solid mechanics and fluid mechanics codes. Data passing among multi-physics SIERRA codes predicted the contaminant release from a drum rupture due to fire even though there is no experimental data available. In the anticipated revision effort of the Handbook by DOE, these computational capabilities could enhance the data in a broader usage and could provide confidence in the safety analysis SIERRA codes can provide the initial source term to be used in the leak path factor (LPF) analyses, which predicts the ST release out of the facility. Typical LPF analysis is done using the MELCOR code, developed at SNL for the U.S. Nuclear Regulatory Commission. Widely used in nuclear reactor applications, MELCOR is a toolbox safety code in the DOE’s central registry for LPF applications. A recent LPF guidance study done by SNL indicated that MELCOR 2.1, along with updated guidance, should replace the obsolete MELCOR 1.8.5 guidance. This new guidance is significantly improved over the previous guidance, utilizing extensive MELCOR validation, including applicable reactor experiments and experiments described in the DOE-HDBK-3010-94 for LPF applications. The latest version of MELCOR should be included in DOE’s central registry, and should be used by safety analysts for LPF analyses.

More Details

Time-resolved pulse-burst tomographic piv of impulsively-started cylinder wakes in a shock tube

AIAA Aerospace Sciences Meeting, 2018

Lynch, Kyle P.; Wagner, Justin W.

Time-resolved tomographic particle image velocimetry measurements of the vortex organization in cylinder wakes at Reynolds numbers from 8,200 to 53,000 is presented. Flow is generated in a shock tube, providing an impulsive starting condition followed by approximately uniform flow conditions for 8.0 msec. A pulse-burst laser and four high-speed cameras enable time-resolved measurements at 10 kHz for the entire test duration; approximately 90 volumetric velocity fields are acquired for each shot. The high energy provided by the pulse burst laser allows for a large measurement volume exceeding most other time-resolved experiments in air. The work demonstrates the feasibility of time-resolved tomographic PIV of large volumes in high-speed air flows, and its utility for maximizing data acquisition in a transient facility. The latter is particularly useful for quantifying the behavior of impulsive flows. A single-image self-calibration procedure is demonstrated to accommodate facility vibrations, and an uncertainty analysis of the measurement is performed. The initial wake development and transition to regular Kármán shedding in the cylinder wake is analyzed in terms of the vortex topology and associated spatial scales as a function of time.

More Details

Trans Atlantic Infrasound Payload (TAIP) Operation Plan

Bowman, Daniel B.; Lees, Jonathan M.

The Carolina Infrasound package, added as a piggyback to the 2016 ULDB ight, recorded unique acoustic signals such as the ocean microbarom and a large meteor. These data both yielded unique insights into the acoustic energy transfer from the lower to the upper atmosphere as well as highlighted the vast array of signals whose origins remain unknown. Now, the opportunity to y a payload across the north Atlantic offers an opportunity to sample one of the most active ocean microbarom sources on Earth. Improvements in payload capabilities should result in characterization of the higher frequency range of the stratospheric infrasound spectrum as well. Finally, numerous large mining and munitions disposal explosions in the region may provide \ground truth" events for assessing the detection capability of infrasound microphones in the stratosphere. The flight will include three different types of infrasound sensors. One type is a pair of polarity reversed InfraBSU microphones (standard for high altitude flights since 2016), another is a highly sensitive Chaparral 60 modified for a very low corner period, and the final sensor is a lightweight, low power Gem infrasound package. By evaluating these configurations against each other on the same flight, we will be able to optimize future campaigns with different sensitivity and mass constraints.

More Details

SPARC: Demonstrate burst-buffer-based checkpoint/restart on ATS-1

Oldfield, Ron A.; Ulmer, Craig D.; Widener, Patrick W.; Ward, Harry L.

Recent high-performance computing (HPC) platforms such as the Trinity Advanced Technology System (ATS-1) feature burst buffer resources that can have a dramatic impact on an application’s I/O performance. While these non-volatile memory (NVM) resources provide a new tier in the storage hierarchy, developers must find the right way to incorporate the technology into their applications in order to reap the benefits. Similar to other laboratories, Sandia is actively investigating ways in which these resources can be incorporated into our existing libraries and workflows without burdening our application developers with excessive, platform-specific details. This FY18Q1 milestone summaries our progress in adapting the Sandia Parallel Aerodynamics and Reentry Code (SPARC) in Sandia’s ATDM program to leverage Trinity’s burst buffers for checkpoint/restart operations. We investigated four different approaches with varying tradeoffs in this work: (1) simply updating job script to use stage-in/stage out burst buffer directives, (2) modifying SPARC to use LANL’s hierarchical I/O (HIO) library to store/retrieve checkpoints, (3) updating Sandia’s IOSS library to incorporate the burst buffer in all meshing I/O operations, and (4) modifying SPARC to use our Kelpie distributed memory library to store/retrieve checkpoints. Team members were successful in generating initial implementation for all four approaches, but were unable to obtain performance numbers in time for this report (reasons: initial problem sizes were not large enough to stress I/O, and SPARC refactor will require changes to our code). When we presented our work to the SPARC team, they expressed the most interest in the second and third approaches. The HIO work was favored because it is lightweight, unobtrusive, and should be portable to ATS-2. The IOSS work is seen as a long-term solution, and is favored because all I/O work (including checkpoints) can be deferred to a single library.

More Details
Results 30001–30200 of 96,771
Results 30001–30200 of 96,771