Publications

6 Results
Skip to search filters

JUBA (Joint UAS-Balloon Activities) Final Campaign Report

Dexheimer, Darielle D.; Apple, Monty A.; Callow, Diane S.; Longbottom, Casey M.; Novick, David K.; Wilson, Christopher W.

Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements from tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.

More Details

Covert air vehicle 2003 LDRD final report

Callow, Diane S.; Callow, Diane S.; Salton, Jonathan R.; Callow, Diane S.; Fischer, Gary J.

This report describes the technical work carried out under a 2003 Laboratory Directed Research and Development project to develop a covert air vehicle. A mesoscale air vehicle that mimics a bird offers exceptional mobility and the possibility of remaining undetected during flight. Although some such vehicles exist, they are lacking in key areas: unassisted landing and launching, true mimicry of bird flight to remain covert, and a flapping flight time of any real duration. Current mainstream technology does not have the energy or power density necessary to achieve bird like flight for any meaningful length of time; however, Sandia has unique combustion powered linear actuators with the unprecedented high energy and power density needed for bird like flight. The small-scale, high-pressure valves and small-scale ignition to make this work have been developed at Sandia. We will study the feasibility of using this to achieve vehicle takeoff and wing flapping for sustained flight. This type of vehicle has broad applications for reconnaissance and communications networks, and could prove invaluable for military and intelligence operations throughout the world. Initial tests were conducted on scaled versions of the combustion-powered linear actuator. The tests results showed that heat transfer and friction effects dominate the combustion process at 'bird-like' sizes. The problems associated with micro-combustion must be solved before a true bird-like ornithopter can be developed.

More Details
6 Results
6 Results